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Abstract

This paper investigates the role of demand uncertainty in explaining cyclical investment fluc-

tuations in the container shipping industry. I develop and estimate a dynamic oligopoly model

with learning in which firms choose investment and scrapping. In this model, firms are uncer-

tain about the true parameters in the underlying process for demand, and form and revise their

beliefs using available information. Counterfactual analysis reveals that uncertainty about the

demand process amplifies investment cycles through (i) leading firms to revise beliefs more dras-

tically as they experience demand fluctuations, and (ii) intensifying strategic incentives among

firms.
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1 Introduction

In many capital-intensive industries such as oil, shipping, and chemical industries, investment is

highly pro-cyclical, even though the cost of investment can be substantially higher during booms. In

these industries, firms often invest in long-lived capital while facing considerable uncertainty about

future demand. Moreover, the process that dictates the evolution of demand can be complicated or

changing over time, creating uncertainty about the demand process itself in addition to uncertainty

about what value of demand will be realized from a known process. Although many studies show that

uncertainty can amplify investment cycles, there is limited empirical evidence as to its quantitative

importance.1 This paper aims to understand the extent to which uncertainty about the demand

process can explain the concentration of investment in boom periods and its welfare consequences

in an oligopoly setting with strategic considerations.

During the trade boom in the mid-2000s, container shipping companies ordered a large volume

of new ships. This corresponded to the price of these ships reaching a historic high. The downturn

in demand following the 2008 crisis resulted in a massive oversupply of ships and, in turn, a sharp

decline of shipping rates and profitability. Many industry experts attribute the excess capacity

problem to the firms’ inability to forecast demand correctly and their over-reaction to recent trends

in demand.2

‘The container-shipping industry has been highly unprofitable over the past five years. ... Some
of the pain is self-inflicted: as in past cycles, the industry extrapolated the good times and
foresaw an unsustainable rise in demand.’ (Mckinsey Insights, 2014)3

Although anecdotal evidence points to the potentially important role of firm beliefs in driving

the investment fluctuations, it is difficult to establish this role empirically due to the lack of direct

measurements of beliefs. To overcome this challenge, I adopt the following approach: (i) I use

survey data that can inform us indirectly about firm beliefs’ about container shipping demand; and

(ii) I analyze an oligopoly model of firm learning and investment that allows uncertainty about

the demand process. The structural analysis serves two purposes. First, it quantifies the extent
1For example, Bernanke (1983) shows that uncertainty increases the value of waiting for new information, thus

increasing fluctuations in investment.
2The problem is not limited to the 2008 crisis, as suggested by the CEO of one of the largest shipping companies in

an interview featured in a Wall Street Journal article, “Maersk Line CEO:WeMisjudged Container-Shipping Demand”,
accessed on January 11, 2016 via http://www.wsj.com/articles/SB10001424052702303342104579098680549111434.

3“The Hidden Opportunity in Container Shipping,” accessed on January 11, 2016. http://www.mckinsey.com/
insights/corporate_finance/the_hidden_opportunity_in_container_shipping
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to which the uncertainty can explain the observed investment cycles. Second, it helps us under-

stand the mechanisms through which uncertainty affects investment fluctuations. In particular, by

incorporating learning in an oligopoly model I can investigate how uncertainty interacts with firms’

strategic incentives.

I first leverage the fact that container demand is largely driven by overall trade demand and

macroeconomic shocks by adopting auxiliary survey data on forecasts of GDP and trade. I compare

these forecasts with expectations about future container trade implied by alternative informational

assumptions while being flexible on the specification of the time-series process. I find that incorpo-

rating learning leads to agent beliefs that are more consistent with the forecasts of GDP and trade.

Although this does not serve as direct evidence of learning, it indicates that incorporating learning

may allow us to better approximate beliefs that can explain observed firm behavior.

To measure the quantitative implications of the alternative belief structure, I develop a dynamic

oligopoly model of firm investment in the spirit of Ericson and Pakes (1995) that incorporates

uncertainty about the demand process. The model captures key features of the industry, but makes

several simplifying assumptions that allow me to make progress on relaxing the full-information

assumption and identifying the model of firm beliefs.4 In this model, agents do not know the

parameters governing the evolution of demand, but form and revise their expectations based on

information available at each decision-making moment. The model allows firms to put heavier

weights on more recent observations to capture beliefs that would arise if firms were concerned

about structural changes in the underlying process (Evans and Honkapohja (2012)). In each period,

firms decide whether to invest in new ships and scrap old ships, and also have the option of borrowing

additional capital through chartering.

The informational assumption in the model is a form of behavioral assumption that contrasts

with the standard full-information (rational expectations) assumption commonly made in a dynamic

oligopoly model.5. Under full information, firms know the true distribution of demand, although

they may be uncertain about exact future realizations.6 Adopting the alternative information struc-

ture with learning in this paper is important for several reasons. First, conceptually, it incorporates
4Section 4 discusses the modeling choices and the motivations in detail. Appendix E presents results from various

robustness checks. Appendix F extends the model to incorporate capital constraints and discusses results.
5An alternative behavioral approach can be found in Greenwood and Hanson (2015)
6Note that the full-information assumption differs from the assumption of perfect foresight under which firms

know future realizations exactly.
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an additional layer of uncertainty that is potentially important for the present empirical context as

evidenced by industry reports, anecdotes, and preliminary analysis based on auxiliary survey data.

Recent empirical work shows that this type of uncertainty is important for explaining investment

cycles in the macroeconomic context7. Incorporating it also allows me to ask how much of the in-

vestment fluctuations can be attributed to uncertainty about the demand process versus uncertainty

about what demand will be realized from a known process. Doing so in an oligopoly setting sheds

light on how uncertainty interacts with strategic incentives. Third, methodologically, it provides a

parsimonious and computationally tractable way of approximating agent beliefs that might arise in

an environment with a complicated data generating process. It can also be easily implemented in

standard dynamic oligopoly models.

The estimation employs firm-level data on capital and investment from 2006 to 2014 as well

as price and quantity data for container services from 1997 to 2014. One of the challenges in

estimating a learning model is that the researcher does not directly observe agents’ beliefs, requiring

a simultaneous identification of information and model parameters. An important empirical strategy

addressing this issue involves using commonly unavailable data on investment costs and scrap values

to pin down the learning process.8 The typical approach recovers unobserved objects such as

investment costs, entry costs, and exit values implied by observed firm decisions while imposing a

full-information assumption.9 In contrast, I use data on ship sales prices and demolition prices to

calibrate the investment cost and scrap value. This allows me to recover the model of firm beliefs

that can rationalize observed firm behavior given the primitives.

The model estimates are consistent with agents placing a 45% weight on a 10-year-old observation

relative to the most current one.10 Removing demand process uncertainty by endowing agents with

knowledge about demand parameters lowers total investment by 17% and investment volatility by

22%. More importantly, it reallocates investment across time, leading firms to withhold investment

during demand boom years and suffer less from overcapacity when faced with downturns in demand.
7See, for example, Fajgelbaum et al. (2017) and Kozlowski et al. (2016)
8This approach is similar to that of Hortacsu and Puller (2008) in the underlying logic. Hortacsu and Puller (2008)

use marginal cost data to quantify how much firms’ actual bidding deviates from the optimal bidding predicted by
their theoretical benchmark for the Texas electricity spot market.

9For example, Ryan (2012) and Collard-Wexler (2013) adopt this approach.
10This estimate is very close to those in previous studies that estimate a constant-gain learning model based on

aggregate survey data such as the Survey of Professional Forecasts or micro data on expectations (e.g. Malmendier
and Nagel (2016), Milani (2007), and Orphanides and Williams (2005)). Doraszelski et al. (2018) also find that firms
weight recent play disproportionately when forming expectations about competitors’ play.
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This has a substantial impact on welfare: it increases producer surplus by 85%, while resulting in

only a small decrease in consumer surplus.

Through counterfactual simulations with respect to demand volatility, I find that an increase in

demand volatility suppresses investment, consistent with findings in previous empirical studies (e.g.

Collard-Wexler (2013)).11 However, I find that the increase in investment volatility in response to

increased demand volatility is much higher in the presence of learning. This finding sheds light

on the additional informational channel through which demand volatility affects investment: under

learning, large fluctuations in demand lead firms to revise their beliefs more frequently and more

drastically, which in turn amplifies boom-bust investment cycles.

In order to highlight the effects of strategic incentives and how they interact with agent be-

liefs, I consider counterfactuals pertaining to competition and learning. Strategic considerations in

oligopolistic competition may lead to excessive investment.12 And agent beliefs may become more

highly correlated with recent realizations of demand and more volatile under learning, which can in

turn reinforce the strategic incentives. For example, firms generally have greater incentives to steal

business from and preempt rivals in periods of high demand due to higher profitability, but under

learning strong demand also makes them also more optimistic about the future, further raising these

incentives. This can lead to over-investment and investment being concentrated in periods of high

demand, which can negatively impact welfare, especially if strong demand coincides with high costs

of investment.

I perform a counterfactual experiment whereby the top two firms merge, which eliminates com-

petition and strategic considerations between them. Under the merger, total investment from 2006

to 2014 decreases by 7.5%. The merger leads to a producer surplus increase of $14 billion and a

consumer surplus decrease of $1 billion, resulting in a total welfare gain in this setting.13 I also

find that allowing coordination among firms through the merger lowers investment rates and mutes

boom-and-bust investment cycles.14 Furthermore, I compare the results from the merger counter-
11Regardless of the presence of learning, if firm profits are concave in demand, increased volatility will decrease

investment. The concavity of the profit function may arise from non-linearity in marginal costs, for example.
12See, for example, Mankiw and Whinston (1986) and Spence (1977) for theoretical work on this issue.
13There are two caveats for the consumer surplus figure. First, it is calculated only with respect to the Asia-Europe

market. Second, the magnitude is likely a lower bound since it does not take into account the price competition channel
as I maintain the assumption of marginal cost pricing. The model does capture strategic considerations in investment
decisions.

14US antitrust policy prohibits firms in the same business from colluding on investment decisions, while Japan
allows cooperation among rivals along this dimension. O’brien (1987) argues that Japan’s support for coordinated
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factual under learning and full information. I find that the effects of the merger on both the volume

and volatility of investment are higher under learning compared to full information, which suggests

that the interaction between learning and dynamic strategic incentives amplifies investment cycles.

During high demand periods in which firms have greater strategic incentives to steal business from

and preempt rivals, learning also leads firms to collectively become more optimistic, which reinforces

strategic incentives.

1.1 Related Literature

This paper builds on a body of literature that studies uncertainty and agents’ beliefs in a learning

framework. At the 2000 Ely Lecture, Hansen (2007) argued that the rational expectations approach

endows agents with too much information and advocated putting econometricians and economic

agents on comparable footing.15 This paper also relates to the literature connecting uncertainty and

cyclical investment (e.g. Bernanke (1983), Pindyck (1991), and Dixit (1994)). A few recent papers

empirically investigate how uncertainty impacts investment and business cycles (e.g. Fajgelbaum

et al. (2017) and Kozlowski et al. (2016)).16 With much of the literature focusing on aggregate

outcomes, this paper contributes to the literature by analyzing implications for firm-level decisions

and within-industry investment cycles.

In the area of learning, empirical IO studies have predominantly explored learning about firms’

private information (e.g. Jovanovic (1982)), learning about a new technology and spillovers across

firms (e.g. Covert (2014) and Hodgson (2018)), or consumers’ learning about values of experience

goods through experimentation (e.g. Dickstein (2011)). Doraszelski et al. (2018) examine learning

about competitors’ strategy and demand elasticity parameters in the context of the UK electricity

market.

This paper makes a methodological contribution to the literature on the structural analysis of

industry dynamics (see Doraszelski and Pakes (2007) for an overview of this literature). Theoretical

work includes Hopenhayn (1992) and Ericson and Pakes (1995), and recent empirical papers that

decision-making in investment is partially responsible for the country’s success in the steel industry.
15Studies that adopt this approach include Cogley and Sargent (2005) that study the role of the Federal Re-

serve’s changing beliefs in monetary policy and Orlik and Veldkamp (2014) that show that uncertainty shocks are
countercyclical through a learning model.

16Fajgelbaum et al. (2017) develop a model of social learning where uncertainty about fundamentals discourages
investment. Kozlowski et al. (2016) show how even transitory shocks can produce persistent effects based on a model
in which agents re-estimate the distribution of shocks as they observe new shocks.
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adopt the “full-solution approach” similar to this paper include Benkard (2004), Goettler and Gordon

(2011), and Igami (2017). The typical approach in modeling beliefs in relation to investment

decisions in a dynamic oligopoly setting is to adopt full-information assumptions (e.g. Ryan (2012)

and Collard-Wexler (2013)). This paper incorporates learning as a belief-formation process in a

dynamic oligopoly framework in order to capture agents’ changing beliefs and information sets.

It shows that this extra dimension of uncertainty about the underlying model parameters can be

crucial in understanding firm behavior in a volatile environment. In particular, the paper shows that

allowing such uncertainty creates a new informational channel through which demand fluctuations

affect investment, contributing to the body of empirical studies that quantify the effect of demand

uncertainty on investment (e.g. Collard-Wexler (2013) and Kellogg (2014)). The framework also

makes it possible to study the interaction between firms’ information and strategic incentives and

its impact on firm investment.

This paper complements empirical studies on the shipping industry including Kalouptsidi (2014),

Kalouptsidi (2018), Brancaccio et al. (2019), and Greenwood and Hanson (2015). Kalouptsidi (2014)

studies investment cycles in the bulk shipping industry.17 Kalouptsidi employs a fully rational model

and uses second-hand ship prices to identify the value of owning a ship non-parametrically. As the

second-hand prices already reflect sellers’ and buyers’ beliefs about future demand, the author

indirectly incorporates firms’ beliefs in the estimation of the value of owning ships. By contrast,

this study models firms’ forecasting process explicitly. This approach will be useful in cases where

the industry does not have an active second-hand market or the second-hand market suffers from

selection problems.18 Understanding how firms form expectations is interesting in its own right as

well.

Greenwood and Hanson (2015) introduce an alternative and complementary set of behavioral

assumptions by considering biases in persistence in earnings and long-run endogenous supply re-

sponses by rivals to explain bulk shippers’ investment behavior. In the behavioral model, as in
17Although bulk and container shipping industries share many similar characteristics, there is stark difference in

terms of market power with much higher concentration in the container shipping industry. Kalouptsidi (2014) assumes
that each firm owns one ship only and develops a competitive model of the bulk-shipping industry. Also, container
shippers operate according to fixed schedules, whereas bulk shippers operate on-demand services much like taxis.

18Adverse selection may arise in the second-hand market if sellers privately observe the quality of the goods. If
there is selection, the quality of goods traded in the second-hand market may differ from the quality of goods currently
owned by firms. In this case, estimating the value of owning the goods from second-hand prices will lead to biased
estimates.
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the full-information model, agents’ perception about the demand process stays fixed (although the

perception is allowed to be different from the true process). By contrast, the learning model incor-

porated in this paper allows uncertainty about the process itself. This is motivated by the fact that

agents may perceive the process to change over time especially in the container shipping industry

with a relatively short history with changes in demand, technology, and regulations. This approach

also allows me to separately quantify the impact of uncertainty about the process and can also be

easily incorporated into standard dynamic oligopoly models deployed in the IO literature.

The remainder of the paper is organized as follows. Section 2 describes the industry and the

data. Section 3 presents suggestive evidence of firm uncertainty based on forecasts of GDP and

trade. Section 4 presents the dynamic model of investment with learning for the shipping industry.

Section 5 describes the estimation procedure and discusses estimation results. Section 6 discusses

counterfactual experiments. Section 7 concludes.

2 Industry and Data

2.1 Container Shipping Industry

The container shipping industry’s core activity is the transportation of containerized goods over sea

according to fixed schedules between named ports. The containers come in two standard dimensions

(the twenty-foot dry-cargo container (TEU) or the forty-foot dry-cargo container (FEU)), which

makes it easier to load, unload, and stack the cargo. The container ships transport a wide range

of consumer goods and intermediate goods such as electronics, machinery, textiles, and chemicals.

Container trade accounts for over 15% of global seaborne trade by volume and over 60% in value

(Stopford (2009)).

Container shipping is a capital-intensive industry in which companies invest in capital by pur-

chasing vessels. The price of building a ship fluctuates depending on the conditions of the ship-

building and shipping markets at the time of the order, including freight rates, the strength of

trade demand, the size of the order book, and expectations.19 Firms can also scrap old ships that

cannot be operated profitably. The demolition prices depend on the demand for scrap metal and
19The construction of new ships occurs at shipyards. There are approximately 300 major shipyards and many

smaller ones globally.
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the availability of ships for scrap.

Container carriers rely on chartered vessels in addition to their own vessels, which are leased

out by third parties. Chartered vessels account for approximately 50% of the total container ship

capacity operated by the largest 20 firms. The majority of charter contracts for container ships

are time charters that involve the hiring of a vessel for a specific period of time with the average

contract length of 7-10 months (Reinhardt et al. (2012)). The charterer has operational control of

the ships, while the ownership and management of the vessel remain in the hands of the shipowner.

This paper focuses on the investment decisions of ship operators as opposed to non-operators due

to limited data on individual non-operators’ investment. Nevertheless, my model takes into account

how charter rates will change with the demand conditions and the individual and aggregate operator-

owned volumes. The behavior of non-operating ship owners and the role of the rental market in

mitigating volatility faced by the ship operators would be a fruitful area for future research.

The industry is vulnerable to sharp swings in global trade demand, but it is hard for firms to

respond quickly to supply-demand imbalances in the short run. There is a gap between the time

of placing a new order and the time of receiving the ordered ships due to time-to-build ranging

from two to four years. Moreover, whereas bulk shippers can easily move their idle ships into lay-

up, container shippers are limited in this respect due to their pre-announced schedules (Stopford

(2009)). Since the shipping rates depend directly on the supply of ships relative to demand, the

ability to make correct forecasts about future demand and invest accordingly is important in this

industry.20

Investment is extremely volatile and is highly correlated with the price of new ships as shown

in figure 2.21 Although the price is on average 42% higher compared to the 2009-2014 period, the

volume of new orders is higher by more than 60% in the 2006-2008 period.
20Freight cost is the most important criterion for customers, although other factors such as transit time, schedule

reliability, and frequency of departure matter as well (Reinhardt et al. (2012)).
21The prices of building a new ship and the number of ships in the industry order book are available by size category

(2500 TEU, 3700 TEU, 6700 TEU, 8800 TEU, 10000 TEU, and 13500 TEU). I first obtain per TEU shipbuilding
prices for each size category and construct the weighted average of these prices. The average scrap value is constructed
in a similar way.
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2.2 Data

This project uses two main datasets on the container shipping industry. The first combines data

collected from two sources: MDS Transmodal, a U.K.-based research company, and Clarksons

Research, a U.K.-based ship-brokering and research company. This dataset covers quarterly infor-

mation from 2006 to 2014. The key information includes: (1) volumes and prices of container trade

by trade route; (2) firm-level information on the number and the capacity of ships that each firm

owns, charters, and has in its order book as well as the capacity deployed in each of the routes the

firm operates on; and (3) industry-level charter rates, scrap prices, and shipbuilding prices.

Estimating firms’ beliefs for the sample period from 2006 to 2014 requires historical price and

quantity data that extend further back than 2006, ideally from the inception of the industry. The

first dataset on firm-level investment and capital is therefore supplemented with the historical price

and quantity data from the Review of Maritime Transport published by the United Nations that

goes back to 1997.22 It contains information on the average freight rates and cargo flows on major

routes. The volume of trade is available annually in this dataset, although the price level is available

at the quarterly level. The quarterly volume of container trade is imputed based on the data on the

value of trade by origin-destination pair from the IMF Direction of Trade Statistics database.23

The analysis focuses on major trade routes that together account for approximately 55% of all

interregional container trade by trade volume and approximately 60% of deployed ship capacity (see

Figure 9 in Appendix B for the average prices on these trade routes from 1997 to 2014). Shipping

firms can adjust their capacity across different routes relatively easily and the network of services

is constantly changing to meet the needs of trade (Stopford (2009)). For this reason, Kalouptsidi

(2014) considers the shipping market to be a global one and includes a single demand component

in her model.

In my application, I account for demand in the Asia-Europe (A-E) market separately from

demand in other major markets. A-E demand was the main driver of the building boom in the

mid-2000s with many ships were built specifically for this market in this period.24 Moreover, many
22Although this is roughly the start date of the official public data on the aggregate price and quantity of container

trade, firms may have longer historical data and use them in forming expectations. Section 5.4 discusses my empirical
strategy in estimating firms’ beliefs given the truncated nature of the price and quantity data.

23The imputation assumes that the quarterly container trade volume is proportional to the value of trade in each
year.

24For example, Maersk ordered eight E-class container ships (of size 14,770 TEU) from 2006 to 2008 all of which
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of these newly built ships could not be easily redeployed to other markets due to size restrictions.

The A-E traffic mainly goes through the Suez Canal, where restriction on ship size is approximately

18,000 TEU. The traffic on the next largest trade route – the Asia-North America route – transits

the Panama Canal (if going to or from the East Coast of North America) which has a smaller size

restriction of approximately 5,000 TEU (expanded to approximately 14,000 TEU in June 2016) and

West Coast ports are also limited in their ability to handle large ships. Over 90% of ships in the

orderbook in my sample were above the 5,000 TEU size restriction, indicating that many of these

newly ordered ships are too large to fit through the Panama Canal.

The analysis focuses on firms that deployed over 80,000 TEU of ships quarterly on the Asia-

Europe route on average in the 2006 to 2014 period. These firms account for more than 95 % of

the total capacity of ships deployed in the Asia-Europe market. This results in a quarterly panel of

17 firms from 2006 to 2014. There is no entry into or exit by these firms during this period. Table

1 provides the summary statistics for this dataset. On average, firms in the sample own 300,000

TEU in capacity, charter 310,000 TEU, and have an order book of 180,000 TEU.

The market structure is more concentrated compared to the bulk shipping industry with more

than 40% of total capacity concentrated in the top three firms.25 Nevertheless, the industry is

considered relatively unoncentrated based on the Herfindahl index that is below 1000 (see Figure

10 in Appendix B for the distribution of firm size based on owned capacity).

3 Preliminary Analysis

In this section, I explore suggestive evidence of firm learning and uncertainty based on auxiliary

forecast data. The idea is that although direct survey data on firms’ beliefs about container ship-

ping demand are not available, I can compare beliefs about closely-related objects such as GDP

and overall trade volume, with beliefs about container trade implied under different informational

assumptions. Various industry reports and experts confirm that the industry indeed relies on these

forecasts when making projections about the container trade industry.26

were intended to be operated on the A-E route.
25Kalouptsidi (2014) shows that the largest fleet share is 3% for Handysize bulk carriers.
26 The United Nations ESCAP uses projections about GDP growth in their study of container trade growth and

writes that “[g]rowth in the container trade is ultimately driven by economic growth. An underlying assumption
of this study is that, for the next decade at least, the structural relationships between the growth in container
trade and economic growth will remain basically unchanged” (accessed on July 18, 2019. https://www.unescap.
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Given the availability of rich forecast data and its importance in understanding oversupply

with many of newly built ships designated directly for this market, I focus on the Asia to Europe

market for this exercise. For GDP forecasts, I use the Survey of Professional Forecasters published

by the European Central Bank reports. The survey not only reports mean forecasts, but also asks

each forecaster to allocate subjective probabilities to ranges of possible outcomes with a width of 0.5

percentage point.27 This allows me to construct a variance measure of the forecasts by computing an

individual forecaster’s variance and taking the mean across forecasters.28 I also obtain the import

volume forecasts from the OECD Economic Outlook. I include 14 European countries that are

consistently in the data and construct one-year-ahead forecasts on year-on-year growth in imports

for this region.29 Figure 12 in Appendix B shows the forecast data. It is notable that the variance of

the forecast jumps in 2008 and maintains the high level through 2014, which already suggests that a

full-information model with constant volatility will not be able to match the forecasts successfully.

In order to obtain expectations about container trade implied under full information, I estimate

the the process for container trade volume. Under this assumption, estimation involves using the

full sample of data from 1997 to 2014, that is, as much data as available to the researcher. To be

as flexible as possible on the specification of the process, I consider a general class of time-series

models, or an autoregressive integrated moving average (ARIMA) process, with varying values for

the order of the autoregressive part, the order of the moving average part, and the degree of differ-

encing. I put a time-trend when the degree of differencing is zero. I also explore specifications with

time-varying volatility in which the error terms follow a GARCH process in addition to constant-

volatility specifications with normally distributed errors. Appendix C.1 provides full details on the

specifications and parameter values that are explored including a behavioral model.

I evaluate these candidate specifications following a standard approach based on the Akaike

org/sites/default/files/pub_2398_ch3.pdf). The UNCTAD’s Development in International Seaborne Trade writes,
“UNCTAD analysis is pointing to continued growth in world seaborne trade that hinges on the continued improvement
of the global economy. In line with projected growth in world gross domestic product (GDP), UNCTAD expects
global maritime trade to grow by another 4 percent in 2018” (accessed on July 18, 2019. https://unctad.org/en/
PublicationChapters/rmt2018ch1_en.pdf).

27For example, forecasters are asked to assign a probability to real GDP rising between 0.0% and 0.4%, 0.5% and
0.9%, and so on. I use two-year-ahead forecasts for GDP because there is substantial bunching in the forecasters’
probabilities in end bins for one-year forecasts. The bunching makes it difficult to construct variance estimates.

28For example, Abel et al. (2016) and Bowles et al. (2007) use the same measure as part of their measure of
uncertainty in output growth.

29The included countries are Belgium, Czech Republic, Finland, France, Germany, Iceland, Ireland, Italy, Nether-
lands, Portugal, Spain, Sweden, Switzerland, and United Kingdom.
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information criterion (AIC)/ Bayesian information criterion (BIC).30 The values of the criteria for

each specification are listed in table 10. The simplest model of AR(1) with constant volatility

minimizes both the AIC and BIC, but I also report results with time-varying volatility, specifically

GARCH(0, 1).31

To evaluate expectations implied by a learning model, I focus the simplest AR(1) process and

non-Bayesian learning, as Bayesian learning requires additional assumptions about priors. In this

model, since agents do not the know parameters of the model (the slope, constant, and variance

of the error), they use past observations to estimate these parameters and form their expectations

based on them. The estimation then amounts to fitting the AR(1) process using historical data

including observations up to the most current period, that is, {Qτ}tτ=1 at each t where Qτ denotes

the logged quantity of container trade at τ .32

Table 2 reports the correlation between the forecasts of GDP and trade and the forecasts of

container trade implied by models with and without learning. The learning model is able to generate

beliefs that are highly correlated with both the GDP and trade forecasts. The variance of GDP

forecasts is especially matched well with the correlation coefficient of 0.9. By contrast, the full-

information model cannot match this pattern even when the volatility of the error term is allowed

to vary. The correlation is 0.17 under the GARCH process and zero by construction under the

constant-volatility specification. The mean container trade forecasts generated by full-information

models are also less consistent with the GDP or trade forecasts. The correlation is negative for the

GDP forecast as full-information models predict that the growth rate is higher during periods of

weak demand.33 This is true even when I add richness to the specification through adding more

lags or moving average terms.

While the results from this exercise alone do not provide direct evidence of firm uncertainty or

reveal which exact model and information firms are using to form beliefs, they suggest that incorpo-
30The AIC and BIC provide selection criteria for the model that better fits the data penalizing the number of

parameters. The AIC imposes a weaker penalty on the number of parameters. The AIC is given by AIC =
(2k − 2 ln(L̂))/N where k is the number of parameters in the model, L is the maximized value of the likelihood
function of the model, and N is the number of observations. The BIC is given by BIC = (ln(N)k − 2 ln(L̂))/N .

31A model with the lowest number of parameters may be favored due to the relative short time-series. As a
robustness check, I repeat the exercise with more lags (p = 2, 3, 4), and find that this does not change the correlation
estimates significatly. The GARCH(1, 1) specification results in a non-significant, negative GARCH coefficient.

32In the structural estimation section, I explore various alternative specifications of learning including Bayesian
learning. Here, I consider the simplest form of adaptive learning with the same weight given to all past observations.

33This is because the AR(1) process has the mean-reversion property. So with the constant parameter estimates
as in the full-information model, the expected growth rate is larger when current demand is lower.
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rating learning might help us in approximating firm beliefs in this environment. This is important

because firm beliefs are key inputs when considering investment decisions or other dynamic decisions

such as entry and exit, but they are often hard to capture especially in a volatile environment with

potential structural changes. Moreover, a learning model provides a unified information structure

with a minimal departure from the rational expectations benchmark that can explain investment

fluctuations observed in the data. It is also parsimonious, providing computational tractability as

discussed in more detail in section 4.

4 Model

Motivated by the finding from the previous section, I propose a dynamic model of firm investment

that allows uncertainty about the demand process. The model builds on the dynamic oligopoly

framework developed by Ericson and Pakes (1995) and the learning literature in macroeconomics.

Firms’ beliefs about demand change over time as firms re-estimate the parameters of the demand

process using up-to-date information available to them. In each period, a firm decides whether to

invest in new ships and whether to scrap existing ships based on its own capital and order-book

levels, and rivals’ aggregate capital and order-book levels as well as its beliefs about future demand.

In the product market competition stage, firms decide on how much capacity to charter (lease

from a third-party chartering company) and how much capacity to deploy in each market. I make

several simplifying assumptions motivated by institutional details and patterns in the data, which

I will discuss throughout this section. I start by describing the environment in 4.1, and demand

for container shipping services and period profits in section 4.2. Section 4.3 describes the model of

firm beliefs, and section 4.4 presents firms’ dynamic problem. Section 4.5 provides a definition of

equilibrium.

4.1 Environment

Time is discrete with an infinite horizon and is denoted by t ∈ {0, 1, 2, ...}. There are n incumbent

firms and the set of incumbent firms is denoted by N = {1, 2, ..., n}. Firms are heterogeneous with

respect to their firm-specific state, xit = (kit, bit), where kit is the capacity of ships owned by firm i
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and bit is the backlog, or the capacity of firm i’s order book.34 Based on the discussion in section 2.2,

the model takes into account demand in the Asia-Europe and other markets separately.35 Then, the

underlying industry state is st = ((xit)i, dt) where (xit)i is the list of all incumbents’ firm-specific

states and dt = (zt, z̃t) includes the demand states of the Asia-Europe market and the outside

market. Note that I still allow firms’ values and actions to depend on the parameters summarizing

firms’ beliefs (through indexing the value function with these parameters).36

The timing of events is as follows: (1) Firms observe their current state as well as their private

cost shocks associated with investing and scrapping. They update their beliefs about demand. (2)

Firms make investment and scrapping decisions. (3) Firms choose how much capacity to charter and

how much capacity to deploy in the Asia-Europe market and the outside market. They receive period

profits. (4) The dynamic decisions are implemented and the delivery and depreciation outcomes are

realized. The industry evolves to a new state.

Computing a Markov perfect equilibrium (in which each incumbent firm follows a Markov strat-

egy that is optimal when all competitors follow the same strategy) for this setting is infeasible due

to the curse of dimensionality. As the number of incumbent firms grows, the number of states grows

more than exponentially.37 To address this challenge, I consider an alternative equilibrium concept

that can be viewed in the context of the moment-based Markov Equilibrium (MME) of Ifrach and

Weintraub (2016), or more broadly the experience-based equilibrium (EBE) of Fershtman and Pakes

(2012).

In MME, firms keep track of and condition their strategies on the detailed state of strategically

important firms (dominant firms) and a few moments of the distribution describing non-dominant
34The owned capacity space denoted by K is discretized into 19 points such that K = {k0, k1, k2, ..., k18} and the

order book capacity space denoted by B into seven points such that B = {b0, b1, ..., b6}. K and B are both discretized
in 100,000 TEU increments such that k0 = 0 TEU, k1 = 100, 000 TEU, and so on, and b0 = 0 TEU, b1 = 100, 000
TEU, and so on. The computational constraints limit us to a coarse discretization of the state space as in many
papers estimating a dynamic oligopoly model (see, for example, Benkard (2004) and Collard-Wexler (2013)). An
earlier version of the paper uses a coarser state space with only 15 points for kit and 5 points for bit and produces
similar results.

35To reiterate, although it is natural to consider a shipping market to be a global one, since firms can reposition
ships across markets relatively easily, the geographical features (due to the size restrictions on the Suez and Panama
Canals) make it difficult for firms to move large ships positioned in the Asia-Europe market to other markets.
Moreover, aggregating multiple routes in the outside market helps reduce the size of the state space.

36The belief parameters are not included as state variables, since firms use their current beliefs as the best forecasts
of future demand, implying that the beliefs are fixed objects from the firms’ current perspective. This assumption
and its implications are discussed in more detail in section 4.4.

37There are 17 active firms in my application. Even a simple specification with a single state variable that can take
up to five different values would result in over one billion of states.
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firms’ states, instead of the detailed state of all incumbents. The main difference between MME

and oblivious equilibrium (OE) introduced by Weintraub et al. (2008) is that MME relaxes the

assumption that firms believe that the average industry state holds at any time. My application

allows firms to keep track of their own firm-specific states, the sum of all incumbents’ states, and the

aggregate demand states. Firms’ strategies thus depend on the firm-specific state, xit = (kit, bit),

and the moment-based industry state defined as ŝt = (
∑

i xit, dt).
38 In appendix E.2, I consider

a version that allows richer information by adding a dominant firm’s state into the moment-based

industry state and show that the model predictions are robust to this change.

4.2 Period Profit

Each market has two directional routes (e.g. Asia to Europe and Europe to Asia in the Asia-Europe

market). Firms face constant elasticity demand in each route they operator in:

logQjt = zjt + α1 logPjt (1)

where zjt denotes the demand state, Pjt the price, and Qjt the quantity on route j at time t.

In each period, firms choose (a) how much capacity to charter (hit), and (b) how much capacity

to allocate to the Asia-Europe market (q̄it) and the outside market (q̃it) given their present state.39

In other words, a firm chooses how much of its total capacity to allocate to the Asia-Europe market

or the outside market where the total capacity is determined as the sum of its chartered and owned

capacity (i.e. kit + hit = q̄it + q̃it).

The marginal cost of providing services on a route is linearly increasing in quantity up to the
38MME strategies are not necessarily optimal, however; there may be a profitable unilateral deviation to a strategy

that depends on the detailed state of all firms. This is because the moment-based state may not be sufficient statistics
to predict the future evolution of the industry.

39I model the chartering and capacity allocation decisions as simultaneous actions instead sequential actions of
deployment followed by chartering in order to capture the relative flexibility of chartering and frictions in changing
deployment. The average charter contract length is 7-10 months on average, but firms operate under multiple charter
contracts at once such that they have many margins through which to adjust chartered capacity in response to
demand shocks. In addition, moving ships across markets is not frictionless due to ship size issues and pre-announced
schedules.
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firms’ capacity constraint as given in equation (2).

mc(qijt, q̄it) =


a+

bqijt
q̄it

if qijt ≤ q̄it

∞ otherwise.
(2)

This functional form implies that (i) the marginal cost increases as the firm’s quantity gets closer to

the firm’s full capacity; and (ii) firms with higher capacity have a lower marginal cost of producing

the same level of quantity. This assumption is based on three institutional details. First, it becomes

increasingly difficult to schedule loading and unloading as the ship reaches its full capacity. Second,

firms that deploy greater capacity on the route have a relative cost advantage due to the fact that

operating expenses such as crew, insurance, and administration offer scales of economies (Stopford

(2009)). Lastly, this functional form allows me to indirectly account for the fact that larger firms

tend to have larger ships and thus higher fuel efficiency without having to include the size of ships

as a state variable.40 This functional form is also similar to that of Ryan (2012), where the marginal

cost increases as firms operate closer to maximum capacity, but only after a threshold is reached.

I assume that in the product market firms are not withholding capacity strategically given

their capacity constraints (although still making positive profits due to the convex costs). This

assumption is motivated by two observations from the data. First, a regression analysis suggests

that variation in the level of competition across routes does not does not explain variation pricing.41

Second, the “effective capacity” (the total capacity of ships firms make available on the market as a

share of the total capacity of ships they have) remains relatively stable over time even in the face of

huge excess capacity during the post-crisis period (see Figure 11 in Appendix B). The share stays

at 92% on average in 2006-2014 with a dip to 87% in 2009 -2010. Given the assumption, the supply
40The correlation coefficient between the capacity on the A-E market and ship size is 0.83.
41A regression of prices on market competitiveness suffers from the classic problem that market structure is en-

dogenous. To address this problem, I instrument the number of firms on the route from region A to region B with
the number of firms on routes that are “neighbors” to region A. Note that demand for route A to B is largely driven
B’s demand for imports from A. But firms serving this route have to serve route B to A as well. Therefore, an
increase in firms operating routes connecting A and other regions will increase the number of firms on route B to A
(, hence, route A to B) for reasons that are unrelated to demand and cost conditions of route A to B. I find that the
coefficient on the number of firms is negative in the OLS estimation, but becomes insignificant in the IV estimation.
The coefficients are reported in table 9 in Appendix B.
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curve for route j is given as the horizontal sum of all firms’ supply curves as follows:

Pjt = a+
bQjt
Q̄t

if Qjt ≤ Q̄t (3)

where Q̄t =
∑

i q̄it. The price in the Asia-Europe market is determined by the intersection of the

demand curve given in equation (1) and the supply curve given in equation (3).

The period profit is the sum of profits from providing shipping services on the Asia to Europe

and the Europe to Asia routes plus the profit from the outside market minus the charter cost and

the fixed cost of capital:

π(xit, ŝt) = max
q̄it,hit

{( ∑
j∈{1,2}

Pjtqijt − c(qijt, q̄it)
)

︸ ︷︷ ︸
Profit from A-E market

+ R(q̃it, Q̃t, ŝt)︸ ︷︷ ︸
Profit from outside market

−CC(hit, xit, ŝt)︸ ︷︷ ︸
Charter cost

− FC · kit︸ ︷︷ ︸
Fixed cost of capital

}
(4)

where FC is the fixed cost of holding one unit of capital, R is the profit from the outside market,

CC is the charter cost, and q̃it is the capacity deployed in the outside market. The fixed cost of

holding ships includes all costs that do not vary with the output level (or how full the ships are)

such as docking fees, maintenance costs, canal dues, and port charges. I do not explicitly model the

chartering market and the product market competition in the outside market but account for them

in a reduced-form way.42 The detailed specification of the reduced-form functions for the charter

cost and the outside-market profit is given in section 5.2.

4.3 A Model of Firms’ Beliefs about Demand

I consider classes of learning models most widely used in explaining macroeconomic fluctuations in-

cluding adaptive learning (which is a frequentist approach to learning and is sometimes referred to

as least-squared learning) and Bayesian learning. I use the adaptive learning model as a benchmark

for several reasons. It does not require the estimation of prior beliefs, which can be challenging with
42It is hard to infer capacity allocated to each small market because of the granularity of the data. Thus, explicitly

modeling product market competition in the outside market will require many strong assumptions about how capacity
is allocated across all individual markets. Similarly, I do not explicitly model the charter market due to limited data
on individual non-operator ship owners.
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the relatively short time-series data. More importantly, the adaptive framework has a parameter

that allows agents to put heavier weights on more recent observations, which help match the invest-

ment fluctuations and the correlation between investment and demand observed in the data better

than Bayesian learning or other alternative models.43 Evans and Honkapohja (2012) show that this

is a natural way to form expectations if agents were concerned about the possibility of structural

changes, and several empirical papers have used this model to empirically explain macroeconomic

fluctuations (see, for example, Milani (2007)). Appendix C.3 presents results under the alternative

model with Bayesian learning.

Under adaptive learning, agents form expectations about demand based on information available

to them in each period. They operate like econometricians who estimate the parameters of the model

based on the best information at their disposal and make forecasts using their estimates. Agents

contemplate a first-order autoregressive model for demand in the Asia-Europe market, denoted by

zt, as the following:

zt = ρ0 + ρ1zt−1 + ωt (5)

= ρyt + ωt

where ωt ∼ N(0, σ2), ρ = [ρ0, ρ1]′, and yt = [1, zt−1]′ (see section 2.2 for the discussion on why this

market is modeled separately from other markets). Similarly, the model for demand in other major

markets, henceforth called the “outside market” (z̃t), is given as:

z̃t = ρ̃0 + ρ̃1z̃t−1 + ω̃t (6)

= ρ̃′ỹt + ω̃t

where ω̃t ∼ N(0, σ̃2), ρ̃ = [ρ̃0, ρ̃1]′, and ỹt = [1, z̃t−1]′.44 Agents are uncertain about the parameters

in the demand model, {ρ0, ρ1, σ, ρ̃0, ρ̃1, σ̃}. Thus, they revise their expectations by re-estimating
43There are alternative models of firm beliefs that are not explored in this paper such as the Cognitive Hierarchy

model (Camerer et al. (2004)) and the Level-k model (Costa-Gomes and Crawford (2006); Crawford and Iriberri
(2007)). This type of models would be more appropriate for empirical settings in which there is a clear hierarchy of
beliefs among firms that can be established empirically, for example, due to the heterogeneity in access to information
or technologies across firms.

44Allowing correlation in demand in these two markets is straightforward and does not change the results quanti-
tatively and qualitatively.
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these parameters in each period based on demand realizations up to time t, {zτ , z̃τ}tτ=0. At each t,

firms’ beliefs about demand can be described by the estimates of the AR(1) parameters, denoted

as ηt = (ρ0
t , ρ

1
t , σt, ρ̃

0
t , ρ̃

1
t , σ̃t).

Firms are assumed to have homogenous beliefs about the aggregate demand. The prices and

volumes of container trade are public information periodically published in trade journals and other

publications. Moreover, swings in global trade demand common to all firms are the main source of

demand shocks in this industry.45 The model also assumes that agents use their current beliefs in

forecasting demand (see Appendix E.1 for an approach to relax this assumption and a discussion

of implications for estimation results as well as challenges in implementation).46 This assumption

has two behavioral interpretations. The first interpretation is that agents believe current beliefs to

be the correct or best forecasts for future demand. The alternative interpretation is that agents use

current beliefs in forecasting as these approximate future beliefs.

Let Yt = [y0, y1, ..., yt]
′ and Rt =

Y ′t Yt
t . The expectations at time t regarding the Asia-Europe

market demand under adaptive learning can be written recursively as

ρt = ρt−1 + λt(Rt)
−1yt

(
zt − ρ′t−1yt

)
(7)

Rt = Rt−1 + λt(yty
′
t −Rt−1) (8)

where λt is the weight parameter that governs how responsive the estimate revisions are to new

data (Evans and Honkapohja (2012)). Figure 8 in appendix B plots the relationship between

relative weights placed on observations and the value of λt. If λt = 1
t , agents put equal weight

on all observations in their information set. If λt is some constant between 0 and 1, weights

geometrically decline with the age of observation such that agents assign heavier weights to more

recent observations. A larger value of λ leads to heavier discounting of older observations. For
45On a practical level there are no publicly available data that provide information on firm-level demand to my

knowledge, which would be necessary to allow heterogenous firm beliefs. Nevertheless, heterogeneity in firms’ beliefs
would arise if firms experienced different demand shocks, for example, through different customer pools. How firms
form heterogeneous beliefs and how they affect firm decisions and industry dynamics are interesting topics of study
for future work.

46This implies that agents do not internalize the possibility of learning in the future. In the context of this
paper, since information about the aggregate trade demand is exogenous to agents’ actions, there is no room for
experimentation regardless of the assumption about learning. In contrast, suppose information is endogenous to
agents’ decisions, for example, because agents are making consumption decisions for experience goods for which
quality is difficult to observe in advance. In this case, the assumption of myopic learning rules out experimentation,
whereas allowing agents to internalize learning in the future may encourage experimentation.
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example, when λ = 0.03, agents put a 30% weight on a 10-year-old observation relative to the most

current observation, while when λ = 0.02, they put a 45% weight on a 10-year-old observation.

4.4 Firms’ Dynamic Problem

Firms make an investment decision (ιit ∈ {0, 1}) and a scrapping decision (δit ∈ {0, 1}) in order

to maximize expected discounted profits.47 I denote the strategy profile as µit = (ιit, δit). Each

investing firm pays an investment cost. The investment cost consists of a part common to all

firms that is a function of the aggregate state, κ(ŝt), and a privately observed part of the cost,

ειit ∼ N(0, (σι)2). If a firm decides to scrap its ships, the firm receives a scrap value. The scrap

value is the sum of the value common to all firms, φ(ŝt), and an iid private value distributed as

εδit ∼ N(0, (σδ)2). I assume that there is also a fixed rate (ζ) at which involuntary scrapping occurs

when the ships become inoperable in which case the firm also receives the same scrap value.48

I denote as ν(δit, xit) the expected amount of capital reduction from voluntary and involuntary

scrapping before the realization of the depreciation outcome such that ν(δit, xit) is 1 if δit = 1, and

ζkit otherwise.

The value function of a firm before observing its private shocks can be written as

V ηt(xit, ŝt) = E
[

max
ιit,δit

π(xit, ŝt)− ιit (κ(ŝt) + ειit) + ν(δit, xit)
(
φ(ŝt) + εδit

)
+βE [V ηt(xit+1, ŝt+1|xit, ŝt)]

]
where ηt is the vector of parameters summarizing firms’ beliefs in period t about future demand.

The first expectation is over (ειit, ε
δ
it) and the second expectation is over the evolution of the state

(xit, ŝt). The value function is a function of ηt as it depends on how firms perceive the demand

state to evolve. Note that the problem is still stationary due to the assumption that firms use the
47Firms are restricted to invest and/or scrap up to only one unit (100,000 TEU) per period due to the discretization

of the state space and computational burden as described in section 4.1. In the data there are no observations of
a capital reduction by more than one unit and there are only three instances of an investment of more than one
unit. Capping the maximum investment level to one unit for each firm reduces the action space, thus significantly
alleviating the computational burden.

48Ship scraps are valuable primarily for their steel, and thus are priced based on the amount tonnage rather than
the age or functionality of the ships. If a firm scraps its vessels, there is no involuntary scrapping in the same period
such that the maximum reduction in kit is one unit. This assumption is made because the data do not provide
any observations of a capital reduction by more than one unit. The interpretation of this assumption can be that
when a firm decides to scrap its vessels, it chooses the oldest vessels that are about to deprecate on their own. This
assumption can be easily relaxed.
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current period’s beliefs (ηt) in forecasting future demand (see Appendix E.1 for the discussion on

relaxing this assumption.) This means that the continuation value is a function of ηt only, and not

ηt+1, ηt+2, and so on. Firms pick the action that maximizes the net present value such that

(ι∗it, δ
∗
it) = arg max

ιit,δit
π(xit, ŝt)− ιit (κ(ŝt) + ειit) + ν(δit, xit)

(
φ(ŝt) + εδit

)
+βE [V ηt(xit+1, ŝt+1|xit, ŝt)]

The current model does not allow for persistent heterogeneity in the investment costs and scrap

values across firms. The transaction-level pricing data on investment and demolition indicate that

there is no significant firm heterogeneity at least in the observed transaction prices of investment

and scrapping. The model incorporates firm heterogeneity in other areas, however, since it may be

important given the persistent concentration of market power. First, the cost of chartering ships

from a third party is allowed to depend on firm size, as larger firms may have greater bargaining

power. Second, the marginal cost of production depends on the capacity of the firm’s deployed ships

as described in section 4.2.

State Transitions

When a firm invests, the order book capacity increases by one unit when there is no delivery at t

and stays constant if there is delivery. A firm’s own capacity is determined by scrapping decision,

and depreciation and delivery outcomes. The transition of the firm-specific state is described as:

kit+1 = kit + τit −min(δit + ψit, 1)

bit+1 = bit + ιit − τit

where τit is delivery and ψit is depreciation. The probability of delivery is a linear function of

the firm’s order-book capacity such that the delivery occurs with the probability of ξbit for some

constant ξ. Similarly, the probability of depreciation is ζkit such that it linearly increases in the

capital stock. The perceived evolutions at time t of the aggregate demand states for the Asia-Europe
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market and the outside market follow first-order autoregressive processes as follows:

zt = ρ0
t + ρ1

t zt−1 + ωt

z̃t = ρ̃0
t + ρ̃1

t z̃t−1 + ω̃t

where ωt ∼ N(0, σ2
t ) and ω̃t ∼ N(0, σ̃2

t ).49 This process is described in more detail in section 4.3.

The parameters in the AR(1) model, ηt = (ρ0
t , ρ

1
t , σt, ρ̃

0
t , ρ̃

1
t , σ̃t), summarize the beliefs about the

evolution of future demand at time t. How firms update these beliefs as they receive new information

is described in section 4.3.

4.5 Equilibrium

The value function can be re-written as the perceived value of a firm using moment-based strategy

µ′ in response to all other firms following strategy µ:

V̂ η
µ′,µ(x, ŝ) = E

[
π(x, ŝ)− ι (κ(ŝ) + ει) + ν(δ, x)

(
φ(ŝ) + εδ

)
+ βEµ′,µV̂

η(x′, ŝ′|x, ŝ)
]
.

The definition of an equilibrium is then given as follows.

Definition An equilibrium comprises an investment and scrapping strategy µ that satisfies the

following conditions:

(a) Firm strategies satisfy the optimality condition:

sup
µ′∈M

V̂ η
µ′,µ(x, ŝ) = V̂ η

µ (x, ŝ) ∀(x, ŝ) ∈ X × Ŝ.

(b) The perceived transition kernel is given by:

P̂µ = ΦPµ

where P̂µ is the transition kernel of the moment-based state when firms use strategy µ,
49I explore alternative specifications including a case in which the errors in the AR(1) processes follow heavier-tailed

t-distributions and a case in which correlation between demand in the Asia-Europe market and demand in the outside
market is allowed. Main results are robust to these alternative specifications.
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Pµ is that of the underlying state, and Φ is an operator such that P̂µ approximates the

process of the moment-based state, Pµ.50

The equilibrium is computed using an algorithm based on value-function iteration. Appendix D

describes the algorithm in detail.

5 Estimation and Empirical Results

The estimation of the dynamic model of investment with learning proceeds as follows. First, I esti-

mate demand for shipping services to recover the elasticity of demand and demand states. Second,

I estimate parameters governing static competition, including the marginal cost of production, the

charter cost, and the outside-market profit, which are used to compute period profits. Third, I

calibrate the investment cost and the scrap value based on the pricing data of new and scrapped

ships as well as other model primitives such as the delivery and depreciation processes. Fourth, I

discuss the empirical implementation of the learning model. Finally, I estimate the dynamic model

through the method of simulated moments.

5.1 Estimating Demand for Shipping Services

The goal of this section is to estimate the price elasticity of demand and to construct demand states

for the Asia-Europe market and the outside market.51 The empirical analogue of the constant

elasticity demand model in equation (1) is:

logQjt = α0 + α1 logPjt + α2Wjt + εjt (9)

where j is an indicator for trade routes, Qjt is the amount of container shipping services in terms

of TEU, Pjt is the average price per TEU, and Wjt is a demand shifter. I estimate equation (9)

using instrumental variables regression in order to correct for the endogeneity of prices. Price is

instrumented with the average size and age of ships and the proportion of ships that are over 20

years old. The size of ships is one of the key determinants of cost efficiency as larger ships require
50In practice, the moment-based industry state’s evolution is defined as the long-run average of observed transitions

from the moment-based state in the current period to the moment in the next period consistent with strategy µ.
51This section follows the demand estimation of Kalouptsidi (2014) closely.
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less fuel per TEU on average. The age of ships matters as well, since older ships tend to require

higher maintenance costs. Log GDP for the destination area is used as a demand shifter.

The estimation uses data from six major trade routes from 2001:Q2 to 2014:Q4.52 The demand

parameters are identified by the time-series variation as well as the cross-sectional variation across

six different routes in the data along with the constant elasticity functional form assumption. In

particular, since ships have to travel back and forth on the two routes in each market they serve, two

routes in the same market (e.g. Asia to Europe and Europe to Asia) have the same level of supply

while facing different demand shocks, which helps the identification of the demand parameters.

The price elasticity of demand is estimated to be -3.89 (see Table 12 in Appendix C.2 for

detailed results). This implies that a change in price from $1510 per TEU to $1360 per TEU would

result in a change in quarterly quantity demanded of approximately 0.92 million TEU on the Asia

to Europe route. Stopford (2009) explains that container trade is price elastic because lowering

prices encourages the substitution of cheap foreign substitutes for local products. Moreover, other

transportation modes are available, such as road and rail transportation and air freight. Kalouptsidi

(2014) estimates demand for bulk shipping to be more elastic at -6.17.

Given the elasticity of demand estimates, I construct the demand state for each trade route (zjt)

as the intercept of the demand curve:

zjt = α̂0 + α̂2Wjt + ε̂jt (10)

where {α̂0, α̂2} are parameters estimated from the regression and ε̂jt is the residual. Finally, I

construct aggregate demand states for the Asia-Europe market and the outside market from the

route-level demand states. For the Asia-Europe market, I take the demand state for the Asia to

Europe direction. Since the container trade volume is less than half on the opposite Europe to Asia

direction, firms’ investment and capacity deployment decisions in the market are mostly dictated

by the trade demand on the Asia to Europe direction. For the outside market, I take the sum of the

demand states in the non-Asia-Europe routes. Figure 1 plots the demand states for 1997 to 2014

for the Asia-Europe and the outside markets. There is a large drop in demand in both markets
52Although the price, quantity, and GDP data are available from 1997, the instruments are available starting from

2001:Q2. The included trade routes are Asia to Europe, Europe to Asia, Asia to North America, North America to
Asia, Europe to North America, and North America to Europe.
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around 2008-2009.

5.2 Estimating the Profit Function

The second step of the estimation is to construct period profits by estimating the marginal cost,

charter cost, and outside market profit functions. Firms’ capacity deployment decisions yield a

supply curve that, along with the demand curve, determines the equilibrium prices and quantities

for the Asia-Europe market. The marginal cost of providing container shipping services is specified in

equation (2), which serves as the basis for the maximum likelihood estimation of the cost parameters

(a, b).

The outside market profit and the charter cost functions are specified in a reduced-form way as:

R(q̃it, xit, ŝt) = q̃it

(
r0 + r1z̃t + r2Q̃t

)
CC(hit, xit, ŝt) = hit(γ0 + γ1zt + γ2kit + γ3Kt).

where Kt =
∑

i kit. The profit from each unit of capacity deployed in the outside market is allowed

to depend on the total deployed capacity in the outside market (Q̃t) since higher supply may lead

to fiercer price competition and lower profit. The charter cost depends on firm-level own capacity

(kit). Charter cost is also allowed to depend on the total capacity owned by operator (Kt) as it is

likely to affect demand for chartering.53

The estimation of the charter cost and outside market profit functions is based on firms’ static

profit maximization problem.54 Given the demand estimates, I estimate these objects via maximum

likelihood based on the first-order conditions with respect to the capacity deployed on the Asia-

Europe route (q̄ijt) and the chartering decisions (hit), respectively. The variations in capacity

deployment and charter decisions across different firm types and across time along with the first-

order conditions and the functional form assumptions provide identification for these parameters.

Table 13 in Appendix C.2 reports estimates of the profit function parameters. The coefficients on
53I estimate an alternative specification that allows the charter rate to depend on the outside market demand, and

find that the coefficient is not significantly different from zero.
54I use implied charter costs from observed chartering decisions instead of calibrating charter costs using the

available data due to several limitations to directly using the observed charter rates. Since the rates are negotiated
between the operator and the ship owner, larger operators may get discounts even though we only observe the average
rates. Moreover, the observed charter rate only includes the transferred amount from the ship operator to the owner,
and does not reflect other costs associated with operating chartered vessels such as port costs and crew costs.
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the Asia-Europe market demand state in the outside market profit and charter cost functions (r1 and

γ1) are positive. This implies that stronger demand leads to higher outside market profits as well as

higher charter costs. The estimates also show that when there is more aggregate deployed capacity in

the outside market, firms earn less from that market on average, which captures competitive effects.

In addition, larger firms tend to face lower charter costs, and an increase in total industry capacity

owned by ship operators lowers charter costs. Finally, the sign on the marginal cost parameter

b is positive, capturing the fact that the cost increases as the firm operates closer to its capacity

constraint. The estimates also suggest that there is substantial cost heterogeneity across firm size.

For example, the marginal cost at qit = 100, 000 TEU is 38% higher for firms with maximum

capacity of 200,000 TEU than for firms with a constraint of 400,000 TEU.55

5.3 Estimating Other Model Primitives

Data on investment costs and scrap values that are typically unavailable in other settings allow a

flexible specification and estimation of the model of firm beliefs. I use industry-level shipbuilding and

demolition price data to estimate the investment cost and the scrap value, respectively, as functions

of the industry state variables (industry owned-ship and order-book capacities, and demand states

for the Asia-Europe and outside markets) via least squares. Figure 3 compares investment costs

and scrap values observed in the data to predicted values obtained from the regression (see Table

14 in Appendix C.2 for the detailed estimates).

The delivery process of newly ordered ships and the depreciation process of existing ships are

also estimated separately from the estimation of dynamic parameters. The mean delivery rate is

estimated based on a simple regression of delivery on the firm’s order-book size with no constant.56

For the depreciation process, I set an exogenous rate. This is because the data do not differentiate

between depreciation and the scrapping of ships that can still be operated physically. Thus, the

depreciation rate and the distribution of the private shocks to the scrap value can not be separately

identified. The depreciation rate, ζ, is set such that the average age at which ships naturally

depreciate is 20 years.57

55Note, however, that the marginal cost of operating at x% of a firm’s capacity constraint is constant regardless of
the firm size by construction.

56The current formulation assumes that the delivery rate depends solely on the firm’s own order-book size, since
the industry order-book size does not have a statistically significant effect on the delivery rate.

57Although historically the lifespan of container ships was 25 to 30 years, it has fallen in recent years especially for
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5.4 Empirical Implementation of the Learning Model

This section discusses the implementation of the learning model described in section 4.3 and presents

expectations about demand implied by the model. The truncated nature of the price and quantity

data for container trade poses a challenge in implementing the learning model. An agent’s informa-

tion set in each period includes all observations from the past. However, although firms may have

access to observations from the inception of the industry, the researcher may not. This problem

arises in most empirical settings when dealing with a learning model. In my particular setting, data

on prices and quantities for major trade routes are available starting from 1997, although the first

international voyage dates back to 1966.

Given this challenge, I explore two alternative methods of empirically implementing an adaptive

learning model: the truncation approach and the imputation approach. Based on the model fit, I

adopt the former. Appendix E.3 discusses details of the imputation approach and the pros and cons

of the two approaches. It also demonstrates that beliefs are robust to these alternatives.

The approach I adopt entails setting the initial period of the information set as the start date of

the data. I consider the weight parameter λt = 1
t as well as λ ∈ (0, 0.04] in increments of 0.0025.58

If λt = 1
t , equal weights are applied to all past observations. In practice, the estimation procedure

under this parameter value amounts to applying least squares to estimate equation (5) for each

period separately. The regression at period t uses demand-state data from the first period to period

t, or {zτ , z̃τ}tτ=0 (see section 5.1 for steps of recovering these states). For cases of a constant λt,

weighted least squares are applied where the weight on an observation from the period τ is given

by (1− λt)t−τ .

Figure 4 shows firms’ demand parameter estimates from 2000 to 2014 under adaptive learning

with λt = 0.02 for the Asia-Europe market (see Figure 13 in Appendix C.2 for the outside market).

The estimates in the shaded area are for 2006 to 2014, which will be used in the estimation of the

dynamic model. The estimate of the persistent parameter ρ1
t rises from 2006 to 2007 and shows a

general downward trend thereafter. The variance parameter σt spikes in early 2009 and stays high

throughout the end of the sample period.

larger ships. Vesselvalues reports that the the average age of all sizes of container ships sold for scrap was around 22
years old and the average age at which a Post-Panamax container ship was sold for scrap was around 19.5 years.

58Orphanides and Williams (2005) suggest that a constant gain parameter in the range between 0.01 and 0.04
matches the data on expectations well.
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Under adaptive learning, the degree to which the parameter estimates react to recent events

grows as agents put more weight on recent observations (as shown in Figure 14 in Appendix C.2).

For example, the degree to which σt jumps around 2009 is the smallest in the case where agents

weigh all past demand realizations equally (λt = 1/t). When λt is a constant, the larger λt, the

larger the jump in σt around 2009. Similarly, the larger the fall in the persistence parameter ρ1 in

the post-2008 period, the larger λt becomes. It is this variation in beliefs and the variation in the

data on investment and scrapping around demand shocks that identify the model of firm beliefs.

The identification of λt is discussed in more detail in section 5.5.

5.5 Estimating the Dynamic Model of Investment with Learning

The last and most computationally intense step of the estimation entails estimating the model of

firm beliefs and the dynamic parameters. The typical empirical strategy of estimating a dynamic

game of investment is to recover objects such as investment costs, entry costs, and exit values

by searching for parameters that minimize the distance between actions observed in the data and

those that the parameters imply (e.g. Collard-Wexler (2013) and Ryan (2012)). This paper instead

employs data on shipbuilding and demolition prices to estimate investment costs and scrap values

as described in section 5.3, which opens up the possibility of identifing the model of firms beliefs.

Although the application is different, the underlying logic of this approach is similar to that of

Hortacsu and Puller (2008) in which the authors use marginal cost data to quantify how much

firms’ bidding deviates from the optimal bidding benchmark.

I employ the method of simulated moments (MSM) to estimate the dynamic model, which

minimizes a distance criterion between key moments from the actual data and the simulated data.

Let θ denote the vector of dynamic and belief parameters such that θ = (σι, σδ, FC, λt). I solve for

an equilibrium of the dynamic investment model and obtain the optimal investment policy function

for each candidate parameter vector.59 Using equilibrium strategies obtained in the previous step,

I simulate the equilibrium path for the 2006 to 2014 period S = 1000 times. And from these paths,
59Recently, empirical techniques have been proposed to estimate the dynamic industry equilibrium without having

to solve for an equilibrium (e.g. Aguirregabiria and Mira (2007), Bajari et al. (2007), Pakes et al. (2007)). The
first stage of this approach entails recovering firms’ policy functions by regressing observed actions on observed state
variables. The second stage involves estimating structure parameters that make these policies optimal. This approach
relies on flexible functional forms in the first step, so the data requirement is too high given the global nature of my
data set. I use a full-solution method instead, which involves solving the model at every guess of the parameter, but
is more efficient.
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I obtain the simulated moments as follows:

Γ(θ) =
1

S

S∑
s=1

Γs(θ).

I search for the parameter vector that minimizes the weighted distance between the data and

simulated moments given as:

f(θ) =
(

Γd − Γ(θ)
)′
W
(

Γd − Γ(θ)
)
. (11)

where Γd is the set of data moments.60

The moments used in the estimation include the average investment before and after 2008, the

volatility of investment, the correlation in demand and investment, and the aggregate capacity of

owned and backlogged ships. Table 3 lists these moments and compares the data moments and

simulated moments under the parameter estimates.

The results (reported in Table 4) indicate that the weighting parameter estimate is λt = 0.02. I

will refer to the adaptive learning model with λt = 0.02 as the baseline learning model in the rest

of the paper. This implies that agents put approximately 45% weights on a 10-year-old observation

compared to the most recent observation. This estimate is very close to the values that previous

studies in macroeconomics have estimated based on aggregate survey data such as the Survey of

Professional Forecasts or micro data on expectations. For example, Malmendier and Nagel (2016),

Milani (2007), and Orphanides and Williams (2005) estimate the constant-gain parameter (λt) to be

0.0175, 0.0183, and 0.02, respectively, with respect to expectations about macroeconomic conditions

and monetary policy. Figure 5 shows that the baseline learning model does well at predicting the

investment boom in 2007 and the plunge in investment in 2009.

The fixed cost of holding one unit of capital (100,000 TEU) in one quarter is estimated to be $25

million, which is approximately 36% of the period’s profit from one unit of capital (where the period

profit is the sum of profits from the Asia-Europe market and the outside market minus the charter

cost and does not include the investment cost and scrap value). This fixed cost includes all costs
60The search is done over grids of (σι, σδ, FC, λt). The grids for σι and σδ are in increments of 0.005 and

the grid for FC is in increments of $50/TEU. The candidate belief parameter values include λt = 1
t

and
λt = {0.025, 0.05, 0.075, ..., 0.4}. I use the inverse of the variance-covariance matrix of the simulated moments as
the weighting matrix (W ).
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that owning and operating ships impose, regardless of the production level, such as maintenance

costs, canal dues, and port charges. It also includes the cost of labor needed in the operation of the

ships regardless of how full they are.

The identification relies on a revealed-preference argument. I have recovered the values of

benefits and costs of each of the options that the firm faces–investment, scrapping, and staying for

each state in the state space as described in section 5.3. As a result, given these values, firms’

choices in various states observed in the data reveal their expectations about future demand.

More concretely, the estimation relies on the variation in firms’ beliefs across different weighting

parameter values and the variation in firm behavior across time and firms observed in the data.

As firms discount older observations more heavily, their beliefs become more responsive to recent

shocks. This will amplify the effect of recent demand shocks on investment, which will increase the

correlation between demand and investment. The left panel of Figure 6 illustrates this relationship

by plotting the comparative statics of the correlation of demand and investment for different values

of λt with all other parameters fixed at each estimated value. Similarly, when λt increases and firms

revise their beliefs more dramatically in response to demand shocks, investment becomes more

volatile, as illustrated in the right panel of Figure 6.

In principle, the parameters are identified by both time-series and cross-sectional variations.

In this dataset, the main identification is coming from the time-series variation in investment and

scrapping as well as investment costs and scrap values, and it is valuable to observe a boom and a

bust in my sample period. The shipping industry provides a great setting in that it is exposed to

large exogenous fluctuations in demand resulting from cycles in world trade.

In the sample period that this paper focuses on, the financial market also experienced an up-

heaval. Therefore, one might worry that omitting information on credit market conditions might

bias the main results of the paper. In appendix F, I incorporate credit market frictions in the form

of collateral constraints in the model and discuss implications.

6 Counterfactual Analysis

I first simulate a model of full information which removes uncertainty about the parameters in the

demand process to quantify the effect of the uncertainty. Through the next two counterfactual
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experiments, I seek to understand the mechanisms through which learning affects firm investment

behavior. First, I address the long-standing question on the effect of demand volatility on invest-

ment. By applying the learning framework I shed light on the informational channel through which

demand fluctuations affect investment. Second, I conduct counterfactuals with respect to compe-

tition and industry consolidation by simulating the industry under a merger of the top two firms.

This exercise helps us understand how the interaction between strategic incentives and agent beliefs

affects investment.

6.1 Uncertainty about the Demand Process

To remove uncertainty about the demand process, I consider a model in which agents know the

parameters of the demand process, and the only uncertainty is about what value of demand will

be realized due to the variance in the process. This is a naive model that is expected to perform

poorly in matching patterns in the data, but the comparison will help us understand the role of

information.

The model governing the evolution of demand is given by equations (5) and (6), as in the

adaptive learning model. I also consider a specification with time-varying volatility.61 In this

version, demand is assumed to follow the same AR(1) process, but the error terms are assumed to

follow a GARCH(1, 1) process such that the current period’s variance depends on the last period’s

realized error and variance:

σ2
t = a0 + a1ω

2
t−1 + b1σ

2
t−1

where ωt−1 is the realized error in period t− 1.

In the full-information model, the parameters in the demand model are known to the agents.

Then, estimating beliefs under this model involves estimating the demand process using the full

sample of data or as much data as are available to the researcher. Beliefs implied by the full-

information model are presented in Figure 7 (see table 16 in appendix C.3 for the estimates of

the GARCH parameters). Compared to the baseline learning model, the persistent parameter (ρ1)
61As an alternative model of stochastic volatility, I consider a Markov regime-switching model where the variance

and persistence parameter are no longer a constant but can take on one of two values. It is rejected that there are
two regimes. The specification in which only the variance can switch between two values produces similar results as
the GARCH model.
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is lower in the pre-2008 period and higher afterward. The jump in the variance around 2009 is

substantially larger under the full information model with time-varying volatility compared to the

learning model. But the hike is more short-lived and the variance is more volatile, while in the

learning model the variance remains high throughout the end of the sample period.

The second column of Table 5 shows the simulated moments under the full-information model.

Primitives are re-estimated for each alternative model of beliefs.62 One of the striking features that

arise when agents are endowed with information about the demand process is that the correlation

between demand and investment becomes negative such that firms restrain from investing in the

peak demand season of 2006-2007 and invest more heavily after 2008. There are two forces driving

this prediction. First, under full information firms’ beliefs about the underlying demand process

remain constant even if they receive a series of high demand draws unlike in the learning model.

Hence, due to the mean-reverting property of the autoregressive process, firms expect slower growth

in high demand periods. Second, there is an a positive relationship between demand and the

shipbuilding prices, which further discourages investment during high demand periods. The results

also suggest that investment is less volatile under full information, suggesting that fluctuations in

agent beliefs arising from learning amplify cycles of investment.

Surprisingly, allowing time-varying volatility under full information does not have a substantial

effect on the level and the timing of investment. The correlation between investment and demand

is only slightly less negative compared to the model with constant volatility. This finding provides

some insights into the role of firms’ beliefs about demand. It shows that although changes in

volatility in demand may partially account for the observed boom and bust cycle of investment, the

main force driving the cycle was the changes in the level of demand forecasts over time.

6.2 Demand Volatility

Demand volatility can affect investment in several ways. First, as real options theory predicts, an

increase in demand volatility raises the cost of investment, since once a firm makes an investment it

cannot disinvest should market conditions change adversely. Second, an increase in demand volatility

may also increase the volatility of investment costs. Finally, the presence of learning opens up an
62Results are not qualitatively different when I fix the primitives at the levels recovered under the baseline learning

model.
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additional channel through which demand fluctuations affect investment, since increased demand

volatility makes agents revise their expectations more often and more drastically.

To quantify the effect of demand volatility, I conduct the following counterfactual simulations.

I simulate two sets of demand series for 2006 to 2014–one with high volatility and the other with

low volatility. In the high volatility case, the variances in the demand processes for the Asia-Europe

and outside markets are doubled from the estimates based on the full sample of data. In the low-

volatility case, the variances are halved from the estimates. The remaining parameters and the

demand realizations prior to 2006 are set to the estimated levels.

Table 6 shows simulation results for the high- and low- volatility cases under learning and full

information, respectively. An increase in demand volatility has a negative effect on investment,

which is consistent with findings in previous studies such as Bloom (2009) and Collard-Wexler

(2013). Going from low to high volatility reduces investment by 8.6% under learning. This suggests

that the value function is concave with respect to demand. If the value function is concave, lower

volatility in demand raises the expected value of owning a ship, increasing the average level of

investment. In addition, an increase in demand volatility also increases the volatility of investment,

as higher demand volatility leads to more volatile shipbuilding prices.

Note that the learning model and the full-information model yield qualitatively and quanti-

tatively different predictions about investment patterns: under learning higher demand volatility

generates larger investment boom-and-bust cycles that are more highly correlated with demand cy-

cles. First, the increase in the volatility of investment in response to an increase in demand volatility

is higher under learning. This is because when learning is present higher demand volatility also leads

to larger changes in firms’ expectations about future demand, which further increases the volatility

of investment. Under full information, the effect is solely through changes in the shipbuilding price.

Second, there is a higher correlation between demand and investment under learning, since learning

generates agent beliefs that are more correlated with demand. By contrast, the increase in demand

volatility has an insignificant effect on the correlation between demand and investment under full

information.
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6.3 Strategic Incentives in Investment Decisions

In this section, I study the effects of strategic incentives and industry consolidation as well as how

these effects interact with agent beliefs. To deal with the recent excess capacity in the industry,

container shipping firms have increasingly moved towards consolidation. In July 2014 Maersk Line

and MSC–the world’s two biggest container-shipping companies–formed an alliance named 2M,

which akin to a code-sharing deal between airlines, is meant to help firms cut costs by using each

other’s ships and port facilities and reduce competition. More firms are planning mergers and

acquisitions as well. Cosco and CSCL, the sixth- and seventh-largest carriers by operated fleet

capacity, have proposed a merger. And CMA-CGM has proposed the acquisition of APL.

On one hand, increased consolidation may hurt consumers through reduced competition. On

the other hand, there are potential sources of efficiency gains on the producers’ side, which makes

the final direction of the welfare change ambiguous. In particular, consolidation may reduce the

business-stealing effect and preemption motives that can lead to the capital levels higher than

the socially optimal level. Mankiw and Whinston (1986) show that the business stealing effect can

result in socially inefficient levels of entry when there are fixed costs of entry. Also, many theoretical

studies predict that strategic incentives can lead to excess capacity, since firms may use investment

as a commitment to deter entry or expansion of rivals (e.g., Spence (1977)).

My model incorporates these strategic incentives that arise in dynamic decisions such as the

business-stealing and preemption motives.63 First, the business-stealing effect arises since a firm’s

investment in an extra unit of capacity has a negative effect on the price and competitors’ prof-

itability, and this negative effect of increasing one’s own capital is internalized by all incumbents

in the market. Second, as the volume of the industry order book grows and shipyards get closer to

their full capacity, the price of building a new ship increases. This generates dynamic incentives for

firms to preemptively commit to investment before others do when they expect strong demand.

In order to quantify the effects of reduced competition and strategic interaction that would result

from industry consolidation, I consider a merger between top two firms that jointly account for over
63An important caveat is that I only account for strategic incentives that arise in dynamic competition, but not the

incentives that arise in static competition due to the assumption of marginal cost pricing in the product market.This
assumption has been made based on two facts. First, the industry is relatively unconcentrated with the Herfandahl
index below 1000. Second, the route’s level of competitiveness measured by the number of active firms does not lead
to changes in the price.
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35% of total capacity. Then, to understand how strategic effects interact with agent learning, I

compare results from the merger counterfactuals under the assumptions of full information and

learning. Firms have greater strategic considerations during periods of strong demand with high

profitability. But, under uncertainty about the demand process, when firms experience a series of

strong demand, they also revise their beliefs about future demand upward, which reinforces strategic

incentives.

The increased size of the merged firm would not only reduce strategic interaction, but would

also result in changes in costs, bargaining power with the charterer, etc. Therefore, to disentangle

the effect of strategic incentives from the effect arising from a change in the firm size distribution, I

assume that the merged firm maximizes joint profits, but still operates two plants, which keeps the

investment and chartering costs comparable to the case with no merger.

As shown in Table 7 Panel A, reducing competition externalities through a merger has a sub-

stantial effect on investment: from 2006 to 2014, investment drops by 7.5%. Investment falls heavily

for the merging firms by 40%, but also falls for non-top-two firms by 2.5%. In addition to the level of

investment, the timing of investment changes as well. In particular, the volatility of investment and

the correlation between investment and demand decrease under the merger case. Compared to the

baseline case, investment is relatively less concentrated in times of strong demand when the price

of investment is also very high (see Figure 17 in Appendix C.4 for yearly investment under different

scenarios). These results suggest that strategic interaction among firms not only is responsible for

raising investment as many theoretical studies suggest, but also raises the volatility of investment.

In terms of welfare, this means that the producer surplus almost doubles while consumer surplus

drops only slightly by 1%.

I compare results from the merger counterfactuals under full information and learning in panel

B of Table 7. The results show that, compared to the learning model, the full-information model

underestimates changes in investment resulting from the merger, and thus underestimates welfare

changes, especially the producer surplus gain. For example, the predicted decrease in investment

resulting from the merger is approximately 14,000 TEU under the learning model, compared to

9,000 TEU under the full-information model. The underestimation of the changes in investment

volatility is also dramatic (25,000 TEU compared to 4,000 TEU). The fact that the effect of strategic

incentives is greater under learning sheds light on the relationship between the competitive forces

36



and firm beliefs. Strong demand for shipping raises firms’ strategic incentives, for example, to

preemptively commit to investment and to steal business from others. But under learning strong

demand also makes agents more optimistic, which amplifies these strategic incentives. These results

also suggest that if a regulator used the full-information model in evaluating this merger, he may

underestimate the welfare gains.

7 Conclusion

Information can play an important role when firms make long-term capital investments while fac-

ing large fluctuations and uncertainty in demand. This paper empirically examines the role of

information in generating investment boom-and-bust cycles and overcapacity in the context of the

container shipping industry. I develop a dynamic oligopoly model of investment that incorporates

an additional layer of uncertainty – uncertainty about the aggregate demand process. In this model,

agents form expectations about demand using the best information available to them in each pe-

riod, and use their changing forecasts in their investment and scrapping decisions. This learning

framework provides a computationally tractable way to incorporate more sophisticated information

sets. This is useful particularly for settings that are highly volatile and complicated with potential

structural breaks such that it is hard for economic agents and researchers to observe and estimate

the underlying process of interest.

A key empirical strategy of the paper is to employ data on shipbuilding and demolition prices,

which allows me to identify the model of firm beliefs. I find that the uncertainty about the demand

process amplifies investment cycles and raises the correlation between investment and demand. The

counterfactual analysis reveals the mechanisms through which learning affects investment cycles.

I find that under learning higher demand volatility leads to more frequent and larger revisions

of expectations about demand, amplifying the magnitude of investment cycles. In addition, by

simulating policies that reduce competition among firms, I find that learning strengthens firms’

strategic incentives, which also amplifies investment cycles.
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Figures and Tables

Figure 1: Demand States

Figure 2: Total Investment and Investment Costs

Notes: This figure shows the volume of new orders (left axis) and the average price of building new ships (right
axis) from 2001:Q1 to 2014:Q4.
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Figure 3: Predicted Investment Costs and Scrap Values

(a) Investment costs (b) Scrap values

Notes: The left panel shows the average shipbuilding price observed in the data and the predicted shipbuilding
price from the regression of the shipbuilding price on the industry state variables. The right panel shows the
average scrap value and the predicted scrap value.

Figure 4: Beliefs under Learning for the Asia-Europe Market

Notes: This figure shows firms’ beliefs about demand in the Asia-Europe market for 2000:Q1 to 2014:Q4 under
adaptive learning with λt = 0.02. The beliefs are summarized by the three parameters, {σt, ρ0t , ρ1t}, in the AR(1)
process as given in equation (5). Beliefs for 2006-2014 in the shaded area are used in the main analysis.
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Figure 5: Model Fits

(a) Capacity of owned ships and order book (b) Yearly investment

Notes: The left panel shows the industry evolution simulated under the baseline learning model (adaptive learning
with λt = 0.02) and the industry evolution in the data. The right panel shows yearly investment simulated under
the baseline learning model and observed in the data, respectively. The simulated moments are based on 1000
equilibrium paths.

Figure 6: Comparative Statics for the Belief Parameter

(a) Correlation between demand and investment (b) Volatility of investment
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Figure 7: Beliefs under Full Information Models of Beliefs for the Asia-Europe Market

Notes: This figure shows firms’ beliefs about demand in the Asia-Europe market for 2000:Q1 to 2014:Q4 under
full-information models. Beliefs for 2006-2014 in the shaded area are used in the main analysis. For the
full-information GARCH model, the leftmost panel includes an inferred conditional standard deviation of ωt.
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Table 1: Descriptive Statistics

Mean Std. Dev. Min Max
Industry-level data (2006-2014)
Shipbuilding price ($1000/TEU) 11.62 2.22 8.69 15.76
Scrap price ($1000/TEU) 2.62 0.55 1.50 3.81

Market-level data (1997-2014)

Asia to Europe Quantity (1 million TEU) 2.37 1.10 0.70 3.98
Price ($1000/TEU) 1.51 0.28 0.80 2.09

Europe to Asia Quantity (1 million TEU) 1.08 0.39 0.51 1.76
Price ($1000/TEU) 0.78 0.10 0.57 1.07

Asia to North America Quantity (1 million TEU) 2.57 0.78 1.12 3.92
Price ($1000/TEU) 1.67 0.21 1.27 2.20

North America to Asia Quantity (1 million TEU) 1.20 0.41 0.63 2.14
Price ($1000/TEU) 0.89 0.16 0.68 1.43

Europe to North America Quantity (1 million TEU) 0.78 0.15 0.48 1.05
Price ($1000/TEU) 1.32 0.16 0.93 1.77

North America to Europe Quantity (1 million TEU) 0.55 0.14 0.32 0.76
Price ($1000/TEU) 0.99 0.21 0.67 1.60

Firm-level data (2006-2014)
Capacity of owned ships (1 million TEU) 0.30 0.25 0.04 1.47
Capacity of ships in order book (1 million TEU) 0.18 0.13 0.00 0.64
Capacity of chartered ships (1 million TEU) 0.31 0.29 0.01 1.55
Capacity of ships deployed in Asia-Europe market (1 million TEU) 0.22 0.19 0.04 0.99

Notes: There are 36 industry-level, 216 market-level, and 612 firm-level observations. In addition to the
Asai-Europe route, other routes include Asia to North America, North America to Asia, North America to Europe,
and Europe to North America routes.

Table 2: Correlation between GDP/ Trade Forecasts and Container Trade Volume Forecasts

Full information Learning
Constant Time-varying
volatility volatility

GDP - Mean -0.38 -0.19 0.66
(0.16) (0.17) (0.13)

GDP - Variance . 0.17 0.90
. (0.17) (0.08)

Trade - Mean 0.06 0.18 0.42
(0.25) (0.25) (0.23)

Notes: Standard errors are in parentheses.
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Table 3: Data and Simulated Moments

Data moments Simulated moments
Average investment in 2006-2008 (1 million TEU) 0.23 0.23

(0.03)
Average investment in 2009-2014 (1 million TEU) 0.14 0.15

(0.02)
Total capacity of owned ships (1 million TEU) 5.12 5.15

(0.27)
Total capacity in the order book (1 million TEU) 3.01 2.98

(0.14)
Correlation between demand and investment 0.19 0.22

(0.12)
Volatility of investment (1 million TEU) 0.17 0.17

(0.03)

Notes: This table compares moments observed in the data and moments simulated under the estimated parameters.
The simulated moments are computed based on 1000 series of equilibrium paths. Standard deviations are in
parentheses.

Table 4: Dynamic Parameter Estimates

λt 0.02 (0.005)
σι (1 billion US dollars) 0.275 (0.055)
σδ (1 billion US dollars) 0.43 (0.092)
FC (1 billion US dollars) 0.025 (0.0051)

Notes: This table shows estimates of dynamic parameters. λt is the weighting parameter in the adaptive learning
model that governs how heavily agents discount older observations when forming expectations about demand. σι is
the standard deviation of the i.i.d. shock around the investment cost of building 100,000 TEU and σδ around the
scrap value. FC is the fixed cost of holding 100,000 TEU of capacity. Standard errors are in parentheses.

Table 5: Full Information Counterfactuals

Baseline Full info Full info
GARCH

Average investment in 2006-2008 (1 million TEU) 0.23 0.17 0.17
(0.03) (0.03) (0.03)

Average investment in 2009-2014 (1 million TEU) 0.15 0.21 0.22
(0.02) (0.02) (0.03)

Total capacity of owned ships (1 million TEU) 5.15 5.05 5.17
(0.27) (0.27) (0.31)

Total capacity in the order book (1 million TEU) 2.98 3.06 3.04
(0.14) (0.15) (0.13)

Correlation between demand and investment 0.22 -0.24 -0.21
(0.12) (0.16) (0.17)

Volatility of investment (1 million TEU) 0.17 0.14 0.15
(0.03) (0.02) (0.02)

Notes: Standard deviations are in parentheses. Primitives are re-estimated for each alternative model of beliefs.
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Table 6: Demand Volatility Counterfactuals

Model Learning Full info
Volatility High Low High Low
Investment (100,000 TEU) 1.48 1.62 1.35 1.57
Volatility of investment (100,000 TEU) 0.75 0.45 0.47 0.31
Corr. between demand and investment 0.04 0.02 -0.12 -0.13
Consumer surplus (1 billion US dollars) 112.60 85.30 113.27 84.11
Producer surplus (1 billion US dollars) 24.59 33.28 26.84 35.08
Total surplus (1 billion US dollars) 137.19 118.58 140.12 119.18

Notes: This table shows results from demand volatility counterfactuals. The owned capacity, order book, and
investment are reported as the average over time, and the welfare measures as the sum over the entire period.
Consumer surplus is calculated with respect to the Asia-Europe market only.

Table 7: Merger Counterfactuals

Panel A: Industry Outcomes and Welfare
Merger(%∆)

Owned capacity (1 million TEU) 5.02 (-2.53)
Orderbook (1 million TEU) 2.78 (-6.80)
Investment (1 million TEU) 0.17 (-7.50)
Volatility of investment (1 million TEU) 0.15 (-14.66)
Correlation between investment and demand 0.15 (-30.46)
Consumer surplus (1 bil. US dollars) 81.69 (-1.13)
Producer surplus (1 bil. US dollars) 28.85 (93.80)
Total surplus (1 bil. US dollars) 110.54 (13.36)
Investment by top two firms (1 million TEU) 0.01 (-40.12)
Investment by other firms (1 million TEU) 0.15 (-2.47)
Owned capacity of top two firms (1 million TEU) 1.43 (-5.59)
Owned capacity of other firms (1 million TEU) 3.59 (-1.25)
Producer surplus of top two firms (1 bil. US dollars) 25.88 (105.15)
Producer surplus of other firms (1 bil. US dollars) 2.97 (20.85)

Panel B: Welfare Changes under Learning and Full-Information Models
Merger

Learning RE
∆ in investment (1 million TEU) -0.014 -0.009
∆ in investment volatility (1 million TEU) -0.025 -0.004
∆ in consumer surplus (1 bil. US dollars) -0.94 -0.46
∆ in producer surplus (1 bil. US dollars) 13.96 10.04
∆ in total surplus (1 bil. US dollars) 13.03 9.58

Notes: Panel A shows results from the merger simulations over the sample period (2006:Q1-2014Q4) with the
percentage changes from the case of no merger in parentheses. The owned capacity, order book, and investment are
reported as the average over time, and the welfare measures as the sum over the entire period. Panel B compares
changes predicted by the learning model and the full-information model. Consumer surplus is calculated with
respect to the Asia-Europe market only.
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Appendix

A Simple Dynamic Oligopoly Model with Learning and Merger

Counterfactuals

In order to demonstrate the key channels through which uncertainty and strategic interaction affect

firm behavior, I analyze a simple duopoly model of firm investment allowing uncertainty about the

demand process. This model retains the main framework of the model presented in section 4, while

abstracting from certain features that are not central to understanding the key forces of interest,

such as chartering and endogenous investment costs. Using this model I simulate a merger of the

two firms under learning and under full information, respectively. Comparing results from these

two simulations will shed light on whether uncertainty about the demand process accentuates the

role of strategic interaction in investment and welfare.

In this model, time is discrete with an infinite horizon and is denoted by t ∈ {0, 1, 2, ...}. There

are two incumbent firms denoted by i ∈ {1, 2}. Firms are heterogeneous with respect to their

firm-specific state, xit = (kit, bit), where kit is the capacity of ships owned by firm i and bit is the

backlog of firm i. The backlog is capped to one unit of capital and there is one period of time to

build. Firm profit also depends on market-level demand dt. The state for firm i is then given by

sit = (xit, x−it, dt).

The timing of events is as follows: (1) Firms observe their current state as well as their private

cost shocks associated with investment. They update their beliefs about demand. (2) Firms make

investment and scrapping decisions. (3) The industry evolves to a new state.

Agents consider a first-order autoregressive process for the evolution of demand given as

dt = ρ0 + ρ1dt−1 + ωt.

where ωt ∼ N(0, σ2). They revise expectations with respect to the evolution of the demand state

based on adaptive learning in the same way as described in section 4.3. That is, in each period t,

firms re-estimate parameters ηt = {ρ0
t , ρ

1
t , σt} based on information available to them, which is the

history of demand realizations {d0, d1, ..., dt}.
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In each period, firms choose whether to invest in one unit of capital (ιit ∈ {0, 1}) and whether

to scrapping one unit (δit ∈ {0, 1}). Firms are not allowed to both invest and scrap in the same

period. A firm pays an investment cost, κ, if it decides to invest, and receives a scrap value, φ, if it

decides to scrap. There is also a private cost shock associated with each action, εit = {ε0it, ε1it, ε2it} .

The private shocks follow a type 1 extreme value distribution.

The value function of a firm before observing its private shock can be written as

V ηt(sit) =E
[

max{π(sit) + ε0it + βE[V ηt(sit+1|sit, ιit = 0, δit = 0)]

, π(sit)− κ+ ε1it + βE[V ηt(sit+1|sit, ιit = 1, δit = 0)]

, π(sit) + φ+ ε2it + βE[V ηt(sit+1|sit, ιit = 0, δit = 1)]}
]

The period profit is given as follows

π(xit, x−it, dt) =
kit√

kit + k−it
dt − akit. (12)

Simulations of Mergers and Uncertainty

This model has at least two sources of strategic considerations in firms’ investment decisions. First,

there is a business stealing incentive, which arises because a firm’s investment in an extra unit of

capacity negatively affects its rival’s profit and is internalized by both firms as seen in equation

(12). Second, a firm has preemption motives in that it invests earlier and more than they would in

the absence of competition in order to discourage its rival’s investment.

I simulate a merger which removes these strategic considerations between the firms under learn-

ing and full information, respectively. I use the demand realizations that I compute from the data

and use in the estimation as in section 5.1. Panel A of table 8 shows calibrated parameters and

panel B shows results from the merger simulations. Comparing the first and third columns of panel

B shows that uncertainty increases both the volume and volatility of investment as well as the total

capacity. Comparing the first and second columns shows that strategic incentives or competition

have the similar effect. Lastly, comparing the third and and sixth columns shows that the effect

of competition is more pronounced under learning. In particular, investment becomes more highly

procyclical under learning. During periods of high demand firms revise their beliefs about future

50



demand upward, which amplifies strategic incentives and raises investment. By contrast, weak

demand lead firms to revise their beliefs downward, resulting in suppressed investment or higher

scrapping.

Table 8: Merger Simulations with a Dynamic Duopoly Model

Panel A: Calibrated parameters
Discount rate β 0.9
Mean investment cost κ 8
Mean scrap value φ .1
Fixed cost a 0.04
Panel B: Simulation results

Learning Full Information
Duopoly Monopoly %∆ Duopoly Monopoly %∆

Total capacity 10.28 7.73 -0.25 9.21 7.47 -0.19
(0.98) (0.53) (0.48) (0.43)

Total investment 0.24 0.13 -0.47 0.19 0.11 -0.45
(0.10) (0.05) (0.05) (0.04)

Volatility of investment 0.46 0.34 -0.27 0.42 0.32 -0.25
(0.09) (0.10) (0.07) (0.08)

Correlation between investment and demand 0.16 0.09 -0.46 0.07 0.06 -0.18
(0.14) (0.17) (0.17) (0.16)

Notes: Standard deviations are in parentheses. The simulation is based on 100 sample paths.
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B Additional Tables Figures

Table 9: Regression of Price per TEU on Competition

(1) (2)
Number of Firms -0.007∗∗∗ 0.003

(0.002) (0.005)
Route FE Yes Yes
Constant 1.50∗∗∗ 1.14∗∗∗

(0.07) (0.19)
Observations 1080 1080
R2 0.890 0.886
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.001

Notes: The dependent variable is price of container shipping services per TEU at the route level where a route
connects two regions. In the second column, the number of firms on route from region A to region B has been
instrumented with the number of firms operating routes connecting region A and other regions. The F-statistics
from the first stage regression is 135.43.

Figure 8: Weights on Observations under Adaptive Learning

Nots: This figure plots weights that are applied to observations for different values of λt in the adaptive learning
model where λt is the weight parameter that governs how responsive estimate revisions are to new data (see
equation (7)).
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Figure 9: Prices on Major Trade Routes

Notes: This figure shows quarterly average prices of shipping a unit of trade goods (TEU) on major container trade
routes from 1997 to 2014. The shaded area covers the period from which this paper’s main analysis derives, from
2006 to 2014.

Figure 10: The Distribution of Firm Size

Notes: This figure shows the capacity owned by each firm as a percentage of total industry capacity, where the
capacity is averaged over the period from 2006:Q1 to 2014:Q4.
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Figure 11: Deployed Ship Capacity as a Share of Total Ship Capacity

Figure 12: Forecasts on Year-On-Year Growth (%) in GDP & Imports for Europe

(a) Mean (b) SD

Notes: The left panel plots two-year-ahead forecasts for GDP in the Euro area and one-year-ahead forecasts for
imports in selected European countries. The right panel plots the standard deviation of the GDP forecasts.
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C Detailed Estimation Results

C.1 Preliminary Analysis

I consider the ARIMA(p, d, q) model given by

Xt − α1Xt−1 − · · · − αpXt−p = εt + θ1εt−1 + · · ·+ θqεt−q

where Xt is the d-degree differenced data on the logged quantity of container trade in TEU, p is

the order of the autoregressive part, and q is the order of the moving average part. I explore a

wide range of parameter values including 0 ≤ p ≤ 4, 0 ≤ d ≤ 1, 0 ≤ q ≤ 4, 0 ≤ p′ ≤ 1, 0 ≤

q′ ≤ 1, and also consider putting a time-trend when the degree of differencing (d) is zero. To

accommodate the volatile nature of the market, I explore specifications with time-varying volatility

in which the error terms follow a GARCH(p′, q′) process in addition to specifications with constant

volatility in which the error terms, εt, have a normal distribution with zero mean. I evaluate these

candidate specifications based on the Akaike information criterion (AIC)/ Bayesian information

criterion (BIC).Table 10 lists all candidate specifications considered and the AIC and BIC criteria.

Table 10: The AIC and BIC for different specifications of the container trade quantity process

ARIMA GARCH AIC BIC
(p, d, q) (p′, q′)

(1,0,0) (0,0) -2.79 -2.69
(2,0,0) (0,0) -2.75 -2.62
(3,0,0) (0,0) -2.72 -2.55
(4,0,0) (0,0) -2.69 -2.49
(1,0,1) (0,0) -2.67 -2.51
(1,0,2) (0,0) -2.63 -2.43
(2,0,1) (0,0) -2.64 -2.45
(2,0,2) (0,0) -2.62 -2.40
(1,1,1) (0,0) -2.70 -2.57
(1,1,2) (0,0) -2.67 -2.51
(2,1,1) (0,0) -2.67 -2.51
(2,1,2) (0,0) -2.75 -2.59
(1,0,0) (0,1) -2.74 -2.59

Notes: The AIC is given by AIC = (2k − 2 ln(L̂))/N where k is the number of parameters in the model, L is the
maximized value of the likelihood function of the model, and N is the number of observations. The BIC is given by
BIC = (ln(N)k − 2 ln(L̂))/N .
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I also repeat the exercise in section 3 with a behavioral model similar to Greenwood and Hanson

(2015). That is, I assume that the logged quantity of container trade follows an AR(1) process

Xt − X̄ = ρ1(Xt − X̄) + εt

with ρ1 ∈ [0, 1) and V ar[εt] = σ2
ε . I estimate this model using the full sample of the data from 1997

to 2014 for the Asia to Europe route and firms to over-extrapolate shocks in container trade by

letting them use ρk ∈ [ρ1, 1) as the coefficient on the (Xt − X̄) term in their forecasts. The results

as shown in table 11 suggest that beliefs from this model are more highly correlated with the GDP

and trade forecasts compared to the full-information model, but less highly correlated compared to

the learning model.

Table 11: Correlation between GDP/ Trade Forecasts and Container Trade Volume Forecasts

Full information Learning Over-extrapolation allowed
Constant Time-varying
volatility volatility

GDP - Mean -0.38 -0.19 0.66 0.08
(0.16) (0.17) (0.13) (0.17)

GDP - Variance . 0.17 0.90 .
. (0.17) (0.08) .

Trade - Mean 0.06 0.18 0.42 0.30
(0.25) (0.25) (0.23) (0.24)

Notes: Standard errors are in parentheses.

C.2 Firm Beliefs and Other Primitives

This section presents detailed results from the empirical implementation of the learning model in

section 5.4 and the first three steps of the estimation described in sections 5.1 to 5.3.
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Figure 13: Beliefs under Learning for the Outside Market

Notes: This figure shows firms’ beliefs about demand in the outside market for 2000:Q1 to 2014:Q4 under adaptive
learning with λt = 0.02. The beliefs are summarized by the three parameters, {σ̃t, ρ̃0t , ρ̃1t}, in the AR(1) process as
given in equation (6). Beliefs for 2006-2014 in the shaded area are used in the main analysis.

Figure 14: Beliefs under Learning with Different Weighting Parameters for the Asia-Europe Market

Notes: This figure shows firms’ beliefs about demand in the Asia-Europe market for 2000:Q1 to 2014:Q4 under
adaptive learning for different values of λt. The beliefs are summarized by the three parameters, {σt, ρ0t , ρ1t}, in the
AR(1) process as given in equation (??). Beliefs for 2006-2014 in the shaded area are used in the main analysis.
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Table 12: IV Regression Results for Demand for Container Shipping

First stage Second stage
Dependent Variable Log price Log quantity
Size of owned ships (1000 TEU) -0.13∗∗

(0.06)
Age of owned ships (year) 0.03

(0.03)
Fraction of 20+ y.o. ships -0.02∗

(0.01)
Log GDP 0.44∗∗∗ 2.73∗∗∗

(0.12) (0.53)
Log price -3.89∗∗

(1.87)
Route FE Yes Yes
Constant -6.27∗∗∗ -32.66∗∗∗

(1.79) (7.48)
R2 0.83 0.11

Notes: Standard errors are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.001.

Table 13: Estimates of the Profit Function Coefficient Parameters

Marginal cost
a 0.265 (0.011)
b 1.750 (0.024)

Outside market profit (R)
r0 -1.238 (0.177)
r1 0.089 (0.006)
r2 -0.117 (0.008)

Charter cost (CC)
γ0 0.206 (0.096)
γ1 0.087 (0.007)
γ2 -0.084 (0.021)
γ3 -0.064 (0.009)

Notes: This table reports estimates of the parameters in the marginal cost, outside market profit, and charter cost
functions. The unit of the aggregate deployed capacity (Q̃t) in the outside market profit function; as well as the
firm-level owned capacity (kit) and the aggregate owned capacity (Kit) in the charter cost function, is 1 million
TEU. Standard errors for the estimates are in parentheses.
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Table 14: Estimates of the Investment Cost and Scrap Value

Investment cost ($1000/TEU) Scrap value ($1000/TEU)
Total capacity of owned ships -1.35∗∗∗ 0.11
(1 million TEU) (0.35) (0.12)
Total capacity in order book 1.12∗∗ 0.06
(1 million TEU) (0.54) (0.19)
Demand state: A-E market 0.50 0.25∗∗

(0.31) (0.11)
Demand state: outside market -0.16 0.08

(0.17) (0.06)
Constant 15.09∗∗ -3.17∗

(4.81) (1.68)
R2 0.69 0.38

Notes: This table reports coefficient estimates in the investment cost and scrap value functions. Standard errors are
in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.001.
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C.3 Additional Results from Alternative Models of Firm Beliefs

This section presents additional results from alternative models of firm beliefs including a Bayesian

learning model.

Bayesian Learning

Under Bayesian learning, each firm starts with prior beliefs about the parameters of the model.

Then, based on its information set, {zτ , z̃τ}tτ=0, the firm updates its beliefs about the parameters

in the demand process, (ρ0
t , ρ

1
t , σt, ρ̃

0
t , ρ̃

1
t , σ̃t). The AR(1) coefficients for the Asia-Europe market,

ρ = [ρ0, ρ1], have normal priors given by ρ0 ∼ N(µ0,Σ0). The prior of σ2 follows an inverse Gamma

distribution. Then, the posterior distribution ρt ∼ N(µt,Σt) has the mean and the variance given

by

µt = Σt

(
Σ−1

0 µ0 + σ−2(Y ′tZt)
)

Σt =
(
Σ−1

0 + σ−2(Y ′t Yt)
)−1

.

The beliefs are defined similarly for the outside market.

The first three years of the price and quantity data (1997:Q1-1999Q4) are used in the estimation

of the prior beliefs, although I explore alternative estimations of the priors.64 I start from diffuse

priors and apply the Gibbs sampling methods. The estimates of the prior are presented in table 15.

In the first quarter of 2000, firms start with the prior beliefs about the parameters and revise their

beliefs using Bayesian updating in each period based on newly realized data. I apply the Gibbs

sampling techniques to estimate the posterior beliefs.

Figure 15 shows posterior beliefs under Bayesian learning. Compared to the baseline model of

adaptive learning, the degree to which firms’ beliefs react to new data is smaller under Bayesian

learning. This is because there are lower weights placed on new data under Bayesian learning, as

agents assign positive weights on their prior beliefs. Consequently, although the timing of the invest-

ment boom and bust predicted under Bayesian learning is consistent with the data, the magnitudes

of the rise and the fall in investment are smaller than observed in the data.

64I explore using the full sample from 1997 to 2014 for estimating the priors with the same updating for posterior
beliefs, in which case the posterior beliefs remain almost identical in this case. The choice of the sample period for
prior beliefs is thus expected to have little impact on empirical results.
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Table 15: Moments of the Prior Distributions under Bayesian Learning

Asia-Europe market
ρ0 ρ1 σ
0.51 0.95 0.17
(0.63) (0.08) (0.02)

Outside market
ρ̃0 ρ̃1 σ̃
8.11 0.72 0.68
(5.19) (0.17) (0.27)

Notes: This table shows the estimated means and standard deviations (in parentheses) of the prior distributions of
AR(1) parameters. The estimation is based on data from 1997:Q1 to 1999:Q4.

Figure 15: Beliefs under Bayesian Learning

(a) Asia-Europe market

(b) Outside market

Notes: This figure shows firms’ beliefs about demand in the outside market for 2000:Q1 to 2014:Q4 under Bayesian
learning. Beliefs for 2006-2014 in the shaded area are used in the main analysis.
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Full Information Model

Figure 16: Beliefs under Full Information for the Outside Market

Notes: This figure shows firms’ beliefs about demand in the outside market for 2000:Q1 to 2014:Q4 under full
information models. Beliefs for 2006-2014 in the shaded area are used in the main analysis.

Table 16: Estimates of the Time-Varying Volatility Models

Asia-Europe market
a0 a1 b1

0.046 0.83 0.17
( 0.015) ( 0.28) ( 0.16)

Outside market
ã0 ã1
0.34 0.73
(0.11) (0.25)

Notes: Standard errors are in parentheses.
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C.4 Additional Results from Counterfactual Simulations

Figure 17: Yearly Investment under the Merger Cases

Notes: The simulations are based on 1000 equilibrium paths.
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D Computation

To compute strategies under MME for the model described in section 4.4, I adopt a computational

algorithm that is analogous to the standard value function iteration algorithm except for an extra

simulation step. Because the transition of the moment-based industry state ŝ may not be Markov,

a simulation step is used to generate the Markov approximation of the transition of this state.

The algorithm starts with a choice-specific value function that maps from the set of state-action

pairs to values denoted as W η(µ, x, ŝ). It contains expected values of different actions prior to

drawing random costs of investing and scrapping given beliefs about demand η. Then, based on

a simulation run in which firms play optimal strategies implied by these choice-specific values, the

algorithm constructs the perceived transition kernel P̂µ[m′|ŝ]. The next step updates the values and

strategies using the best response against the current strategy and the perceived transitions kernel.

Finally, equilibrium conditions are checked based on the norm of the distance between the values

in the memory and the updated values. A more detailed description of the algorithm is provided as

follows:

1. InitializeW η(µ, x, ŝ) for all (µ, x, ŝ) ∈M×X×Ŝ, and optimal strategies, µ∗, thatW η implies.

2. Simulate a sample path of {ŝt}Tt=1 for large T based on µ∗. Calculate the empirical frequencies

of industry state h(ŝ) = 1
T I{ŝt = ŝ} for all ŝ ∈ Ŝ. Calculate the empirical transition kernel as

P̂µ[m′|ŝ] =

∑T
t=1 I{ŝt = ŝ,mt+1 = m′}∑T

t=1 I{ŝt = ŝ}
.

3. Calculate the new values for each state-action pair (µ, x, ŝ) as:

W̃ η(µ, x, ŝ) = π(x, ŝ)− ικ(ŝ) + ν(δ, x)φ(ŝ) + βEa,µ
[
V η(x′, ŝ′|x, ŝ)

]
and obtain the new best response µ̃∗ = arg maxµW (µ, x, ŝ|µ, µ∗) for all (x, ŝ) ∈ X × Ŝ.

4. Calculate the following norm: maxx,µ
∑

ˆ
s∈Ŝ
|W̃ η(µ, x, ŝ)−W η(µ, x, ŝ)|h(ŝ).

5. If the norm is greater than ε, update the values and the strategy profile with W̃ and µ̃∗ and

repeat steps 2-5.
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E Robustness

E.1 Relaxing the Myopic Learning Assumption

The main specification of this paper assumes that agents do not internalize the possibility of learning

in the future and use their current beliefs in their forecasts. This implies that although the param-

eters {ρ0
t , ρ

1
t , σt, ρ̃

0
t , ρ̃

1
t , σ̃t} that summarize agents’ current beliefs are still state variables, they are

not “active” in the sense that they stay fixed over time, as forecasting demand for all future periods

requires only the current beliefs. Therefore, I can solve the model while fixing the belief parameters

at the levels implied by demand realizations observed in the data and the specified learning model.

In contrast, if I allow agents to forecast using beliefs that change as they receive new draws of

demand, the belief parameters now become state variables that evolve stochastically depending on

the realizations of demand. Therefore, implementing this requires solving the model for each point

on a fine grid of belief parameter values in addition to values of all other parameters.

Since fully relaxing the myopic learning assumption is computationally infeasible, I consider

partially relaxing it by allowing agents to internalize future learning for one period ahead. That

is, at time t agents use their current beliefs in predicting the distribution of demand for t + 1 and

use their updated beliefs based on demand realized at t+ 1 to predict demand from t+ 2 onwards.

Although still restrictive, this exercise will be informative, especially because due to discounting the

effect should be the strongest for t + 1 and subside over time. I solve this model for the baseline

case where all other parameters are held at their estimated values.

Table 17 shows simulated moments under this new specification (referred to as “non-myopic

learning”) in comparison with the moments under the baseline specification. The results show that

the correlation between demand and investment is higher under non-myopic learning while other

moments are almost identical under the two specifications. That is, when firms internalize the

possibility of learning in the future, their recent demand draws, and thus their current beliefs have

stronger positive effects on investment. For example, when firms receive favorable demand draws,

their current beliefs are revised upward, but this also makes them believe that future draws will be

more favorable and they will continue to be more optimistic relative to the myopic learning case.

Thus, under non-myopic learning the effect of recent demand on investment is further reinforced.
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Table 17: Simulated Moments under Non-Myopic Learning

Non-myopic learning Baseline
Average investment in 2006-2008 (1 million TEU) 0.24 0.23

(0.03) (0.03)
Average investment in 2009-2014 (1 million TEU) 0.15 0.15

(0.02) (0.02)
Total capacity of owned ships (1 million TEU) 5.16 5.15

(0.27) (0.27)
Total capacity in the order book (1 million TEU) 3.00 2.98

(0.14) (0.14)
Correlation between demand and investment 0.27 0.22

(0.11) (0.12)
Volatility of investment (1 million TEU) 0.17 0.17

(0.02) (0.03)

Notes: The simulated moments are computed based on 1000 series of equilibrium paths. Standard deviations are in
parentheses.

E.2 Adding a Dominant Firm’s State in the Moment-Based State

The moment-based Markov equilibrium as proposed by Ifrach and Weintraub (2016) allows firms to

keep track of the detailed state of dominant firms (strategically important firms) as well as moments

describing the state of fringe firms as their moment-based industry state. In my application, firms’

industry states are further reduced to the the sum of states of all firms However, MME strategies

may not be optimal (i.e. there may be a profitable unilateral deviation to a strategy that depends

on more detailed information), if moments do not summarize all payoff-relevant information. In

order to investigate how robust equilibrium strategies are to changes in the moment-based industry

state, I consider a version in which richer information is allowed in the industry state and compare

model predictions and values to the baseline case.

In particular, firms condition their strategy on the firm-specific state of the largest firm (the

dominant firm) in addition to the states in the baseline case including their own firm-specific state,

the sum of all firms’ states, and demand states. In one version, the dominant firm’s capital, denoted

as k1 is included in the information set and in the other version, the dominant firm’s order book, b1.

Let ŝ′ denote the new industry state and let µ′ and V̂ ′ denote the optimal strategy and the value of

the new game based on ŝ′ as the industry state. The difference in the values of the baseline model
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and the model that includes the dominant firm’s state for each underlying state s is defined as:

∆µ′(x, s) =
V ′ηµ′,µ(x, ŝ′)− V̂ η

µ (x, ŝ)

V̂ η
µ (x, ŝ)

.

The expected value of this deviation is computed as the weighted average through a simulation where

the weights come from simulations based on the baseline model, or V̂ . Table 18 shows that model

predictions stay robust when either of the dominant firm states is added. The average difference in

the values is not significantly different from zero for both cases.

Table 18: Adding a Dominant Firm’s State in the Moment-Based State
Panel A: Simulated moments

Baseline Model with dominant Model with dominant
firm’s capital state firm’s order book state

Average investment in 2006-2008 (1 million TEU) 0.23 (0.03) 0.23 (0.03) 0.23 (0.03)
Average investment in 2009-2014 (1 million TEU) 0.15 (0.02) 0.15 (0.02) 0.15 (0.02)
Total capacity of owned ships (1 million TEU) 5.15 (0.27) 5.13 (0.28) 5.14 (0.28)
Total capacity in the order book (1 million TEU) 2.98 (0.14) 2.98 (0.14) 2.99 (0.14)
Correlation between demand and investment 0.22 (0.12) 0.21 (0.12) 0.22 (0.12)
Std. dev. in investment (1 million TEU) 0.17 (0.03) 0.17 (0.03) 0.17 (0.03)
Panel B: Average difference in values
All firms (%) -0.35 (0.46) -0.42 (0.54)
Dominant firm (%) -0.18 ( 0.22) -0.21 (0.26)
Fringe firms (%) -0.36 (0.48) -0.43 (0.56)

Notes: Standard errors are in parentheses.

E.3 Implementation of the Adaptive Learning Model

I explore and compare two approaches in implementing the learning model. The truncation approach

entails setting the initial period of the information set as the start date of the data. This method

is straightforward to implement and is appropriate if firms also do not have access to information

beyond the data available to the researcher. However, bias can arise if the agents’ information set

includes observations extending further back than the start date of the data. The bias would be

mitigated if agents discount older observations more heavily when forming expectations.

The imputation approach employs external data that provide information about the missing

data. This approach is appealing if agents indeed use a longer historical dataset in forming expec-

tations than observed by the researcher, and the researcher has access to the external data that

provide a good approximation to these data. Bias can arise, however, from the imputation process
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depending on the quality and scope of the external data. In the context of this paper, for example,

one could consider using international trade data to proxy demand for container shipping.

The imputation approach is implemented as follows. I set the start date for firms’ information

as the second quarter of 1966, which is the date of the first international container voyage. Then,

I employ quarterly data on the value of trade by origin-destination pair from the IMF Direction of

Trade Statistics database to impute the missing data on demand states from 1966:Q2-1996:Q4.65

Finally, I estimate the beliefs using the imputed longer time-series data in the same way as the

truncation approach.

Figure 18 compares beliefs for the Asia-Europe market under the truncation and imputation

approaches. The beliefs are closer to one another, especially for the period of the main analysis,

from 2006 to 2014. The model fits under the two approaches are also close to one another, although

they are better under the truncation approach, especially for the correlation between demand and

investment as shown in Table 19.

Table 19: Data Moments and Simulated Moments under the Truncation and Imputation Approaches

Data Truncation Imputation
Average investment in 2006-2008 (1 million TEU) 0.23 0.23 0.22
Average investment in 2009-2014 (1 million TEU) 0.14 0.15 0.16
Total capacity of owned ships (1 million TEU) 5.09 5.15 5.17
Total capacity in the order book (1 million TEU) 3.07 2.98 2.98
Correlation between demand and investment 0.19 0.22 0.26
Std. dev. in investment (1 million TEU) 0.17 0.17 0.18

Notes: This table compares moments observed in the data and moments simulated under the truncation and
imputation approaches of the baseline learning model.

65To translate the value of trade to the quantity of container trade, the demand state for the 1997-2014 period was
regressed on the de-trended value of trade. Then, the demand states for periods with missing data are constructed
as predicted values from the regression. For the 1997-2014 period, actual demand states are used.
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Figure 18: Beliefs under Adaptive Learning Based on Two Alternative Approaches

Notes: This figure shows firms’ beliefs about future demand under adaptive learning estimated with the truncation
approach and the imputation approach, respectively, for the case of λt = 0.02. Beliefs for 2006-2014 in the shaded
area are used in the main analysis.
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F Credit Market Conditions

In the sample period that this study focuses on (2006-2014), the financial market also experienced

an upheaval along with the international trade market. Therefore, one might worry that omitting

information on credit market conditions might bias the main results of the paper. I address this

concern in two ways. First, I simulate a model that takes into account credit market frictions in the

form of collateral constraints. Second, I employ auxiliary data on companies’ financials information

and examine evidence of financial constraints.

F.1 A Model with Credit Market Frictions

Vessels either currently in construction or held by the company typically serve as collateral for bank

loans. Therefore, the dip in the value of ships and the resulting tightening of credit can be another

factor contributing to the sharp decline of investment in new ships during the financial crisis. To

incorporate this idea, I allow financial frictions in the form of collateral constraints. In particular, I

model a borrowing constraint that depends on the resale value of the firm’s current stock of capital.

The dynamic problem firms face with such financial frictions can be written as

V ηt(xit, ŝt) = max
ιit,δit

π(xit, ŝt)− ιit (κ(ŝt) + ειit) + ν(δit, xit)
(
φ(ŝt) + εδit

)
+ βE [V ηt(xit+1, ŝt+1|xit, ŝt)]

s.t. kitχ(ŝt) ≥ dιit (κ(ŝt) + ειit)

where χ is the resale value of one unit of ships that depends on the state ŝt and d is a parameter

determining tightness of the collateral requirement.

To simulate this model with credit constraints, I first supplement my data with the data on the

price of second-hand ships. I estimate the resale value as a linear function of the aggregate state

variables with the estimates presented in table 20. The parameter d is calibrated to be 140%, which

requires that the existing ships be valued at least 1.4 times the value of the purchased ships. I use

this value, which likely overestimates the tightness of the credit constraint, because the goal of the

excise is to learn about the role of financial frictions.66 I simulate the industry imposing the credit
66The value is likely an overestimate because the required minimum value-to-loan ratio is generally between 120%

and 140%. Moreover, firms typically use vessels under construction that they are purchasing as the main collateral.

70



constraint starting from the third quarter of 2008, during which both investment and the value of

ships collapse.67

Table 20: Estimates of the Resale Value

Resale value ($1000/TEU)
Total capacity of owned ships -3.16∗∗∗

(0.63)
Total capacity in order book 3.11∗∗

(1.00)
Demand state: A-E market 0.25

(0.56)
Demand state: outside market 0.06

(0.30)
Constant 13.38

(8.80)
R2 0.74

Notes: This table reports coefficient estimates in the resale value function. Standard errors are in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.001.

Table 21 presents a comparison between the computed equilibrium under the baseline model

without the financial frictions and that under the model with the frictions. The results suggest

that while introducing endogenous financial frictions have distributional effects on investment and

capital, the main results from the model are robust. The total amount of capital and the correlation

between investment and demand remain almost identical, and the total amount of investment falls

by 5%. There are asymmetric effects on the firms. The amount of investment decreases for the

smaller firms that are more constrained due to their low capital stock, while it increases slightly for

the largest two firms.

F.2 Credit Constraints and Investment

Using data from Compustat on firms’ debts and liabilities, I regress investment levels on state

variables and variables relating to the firm’s credit constraints including long-term debt and debt

in current liabilities.68 If financial constraints were the main determinants of investment, we would

Existing capital is used as additional collateral when the credit market is extremely tight.
67I assume that the change in the credit market came as a surprise, in that firms did not expect the change prior

to the third quarter of 2008.
68281 company-quarter-level observations on company financials are available out of 612 observations used in the

main analysis. There is, however, substantial variation on the magnitude of debts across firms in the data. The
average firm-level long-term debt over the sample period varies from 0.06 million dollars for UASC to 4.3 billion
dollars for Hyundai.
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Table 21: Results from the Model with Credit Market Frictions

Baseline With frictions
Total capacity of owned ships (1 million TEU) 51.47 51.17

(2.72) (2.67)
Total capacity in the order book (1 million TEU) 29.81 29.06

(1.41) (1.54)
Correlation between demand and investment 0.22 0.23

(0.12) (0.11)
Volatility of investment (1 million TEU) 1.73 1.70

(0.26) (0.26)
Total investment (1 million TEU) 64.92 61.18

(6.31) (5.84)
Total investment by top two firms (1 million TEU) 0.87 0.88

(0.25) (0.26)
Total investment by other firms (1 million TEU) 5.62 5.24

(0.58) (0.55)

expect that firms that hold a higher amount of debt (thus facing harsher credit constraints) would

withhold investment to a greater extent. The regression results presented in Table 22, nonetheless,

suggest that debt levels do not have statistically significant effects on firms’ investment.

Table 22: Regression of Investment on Debt-Related Variables

Dependent variable: Investment (1000 TEU)
Owned-ship capacity (1000 TEU) -.037 (.027)
Order-book capacity (1000 TEU) -.024 (.017)
Aggregate owned-ship capacity (1000 TEU) .012 (.01)
Aggregate order-book capacity (1000 TEU) -.015∗∗ (.0064)
Demand state (Asia to Europe) 1.1 (2.3)
Demand state (outside market) .06 (1.3)
Chartered ship capacity (1000 TEU) -.025 (.024)
Aggregate chartered ship capacity(1000 TEU) -.019∗ (.011)
Deployment in Asia-Europe market (1000 TEU) .087∗∗ (.043)
Aggregate deployment in Asia-Europe market (1000 TEU) .019∗∗ (.0078)
Long-term debt (1 billion US dollars) .00079 (.002)
Debt in current liabilities (1 billion US dollars) -.0019 (.0029)
Constant -11 (38)
Observations 281
R2 0.076

Notes: Standard errors are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.001.
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