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Abstract

Health insurance plans in the U.S. increasingly use price mechanisms to steer de-

mand for prescription drugs. The effectiveness of these incentives, however, depends

both on physicians’ price sensitivity and their knowledge of patient prices. We develop

a moment inequality model that allows researchers to identify agents’ preferences with-

out fully specifying their information. Applying this model to diabetes care, we find

that physicians lack detailed price information and are more price-elastic than full-

information models imply. We predict that providing physicians detailed information

on prices at the point of prescribing can save patients 12-23% of their out-of-pocket

costs for diabetes treatment.
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∗We thank Stéphane Bonhomme, Chris Conlon, Liran Einav, Haoran Pan, Ariel Pakes, Marc Rysman,
Xiaoxia Shi, and Amanda Starc for insightful conversations, and seminar participants at ASSA Annual Meet-
ing, CEPR Virtual IO Seminar, IIOC, Georgetown University, KAEA virtual seminar, Harvard University,
MIT, New York University, Northwestern University, Pennsylvania State University, SITE IO of Healthcare
and Credit Markets Conference, and Tinos Industrial Organization Conference for helpful comments. We
especially thank Alon Eizenberg for his very useful discussion. We also thank the staff at the Oregon Health
Authority for assistance using the APAC dataset. All errors are our own. Email: michael.dickstein@nyu.edu,
jjeon@bu.edu, ecmorale@princeton.edu.



1 Introduction

Real per-capita annual spending on prescription drugs increased from $140 to over $1,000

in the U.S. between 1980 and 2018, more than doubling the overall growth in health care

spending during the same period (CBO, 2022). In response, as a means to change drug

consumption patterns, private insurance plans have embedded price incentives in formularies

that map drugs to tiers and require patients to pay more for higher-tier drugs. For example,

in 2000, 22% of employer insurance plans had a single copayment level for all drugs, and

only 27% had three or more tiers (KFF, 2005). In contrast, by 2022, 85% of employer plans

had at least three tiers (KFF, 2022).

The success of price incentives in shifting demand for prescription drugs depends both on

preferences—how physicians and patients value the efficacy of a treatment against its cost—

and awareness of the monetary incentives. For policymakers seeking to steer prescription

drug demand toward cheaper alternatives, it is critical to distinguish information from pref-

erences. If, for example, the out-of-pocket cost for an expensive branded drug increases and

usage remains high relative to lower cost options, is the lack of switching because the branded

medication has higher effectiveness, because physicians and their patients are price-inelastic,

or because physicians are unaware of the relative differences in out-of-pocket costs?

We develop a model that allows us to estimate both physicians’ sensitivities to out-of-

pocket costs and the value they place on a drug’s efficacy. Importantly, we do so allowing

physicians to vary unobservably in the information they use to form expectations about

drug- and patient-specific out-of-pocket costs. In addition, we use the model to test whether

physicians with different training or with different prescribing experience possess more or

less information about patient prices. Combining estimates of physicians’ preferences with

inferences about their information, we evaluate the effects of policies to inform physicians

about out-of-pocket costs at the point of prescribing.

We focus our analysis on the study of prescription drug choices for patients with type 2

diabetes. We choose diabetes care as our market of interest because of both the size of the

affected population and the rapid growth in treatment costs. In the U.S., 37 million people

lived with diabetes in 2019 (CDC, 2022), and the direct medical costs of diabetes totaled

$237 billion in 2017, rising 26% above 2012 inflation-adjusted levels (ADA, 2017).

Using Oregon’s All Payer All Claims database for the years 2012-2016, we form a sample

of prescription drug insurance claims for diabetic patients covered by private insurance. We

collect treatment choices, patient prices, and patient and physician demographic information.

Using these data, we start by documenting two facts about out-of-pocket costs. First, there

is significant dispersion in monthly out-of-pocket costs, both across insurance plans for a
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given drug, and across drugs and plan types for a given insurer. For example, for the class of

treatments known as DPP-4 inhibitors, the mean out-of-pocket cost for a 30-day supply lies

between $40 and $50, depending on the drug. The interquartile range of out-of-pocket costs

is large relative to the mean, ranging between $20 and $30 for a drug in a given year, when

computed across the distribution of insurers and plans. If we compute the same statistic

across drugs and plans for a given insurer, the interquartile range of out-of-pocket costs is

also substantial, lying between $16 and $43 for the top four insurers.

As a second key fact, we observe physicians often choose drugs that are not the patient’s

cheapest option. For example, although there are only three drugs in the class of DPP-4

inhibitors, physicians choose patients’ lowest-cost option only 38% of the time, roughly the

same as if they had chosen randomly. If instead physicians selected the cheapest alternative

at each visit, patients would save roughly $10 per month on average. Furthermore, for some

plans, patients would see much larger savings, on the order of $50 to $100 per month.

The observed relationship between drug choices and out-of-pocket costs may reflect pref-

erences, or could indicate that physicians lack information on the price incentives the patient

faces. To separate these two mechanisms, we develop a model of prescription drug choice

in which the physician selects a treatment based on the effectiveness of each drug and her

sensitivity to expected out-of-pocket costs. While we assume the physician’s expectations

are rational, we allow the information set to vary flexibly across physicians and office visits.

In doing so, physicians’ expectations function like unobserved covariates in our model.

We estimate the model using a moment inequality procedure that combines two sets of

moments. The first set, labeled “odds-based” moments, generalize the approach in Dickstein

and Morales (2018) to settings with more than two choices. We build the second set, labeled

“bounding” moments, as in Fujiwara et al. (2023). We show formally that when researchers

combine these moment inequalities with instrument functions that depend on variables that

belong to the physician’s information set, the resulting identified set includes the true value

of the preference parameters. Thus, our moment inequalities provide bounds on preference

parameters even when the researcher only partly observes the agent’s information set.

Before applying our model to the study of diabetes care, we conduct a simulation to

illustrate the properties of both our moment inequalities and alternative full-information

estimation approaches. We have four key conclusions. First, following Manski (1991, 2004),

we show maximum likelihood estimates of preference parameters are inconsistent when the

researcher incorrectly specifies the agent’s information set. The bias grows in the degree

to which agents’ true expectations differ from the expectations implied by the researcher’s

assumed information set. Second, consistent with our formal analysis, our inequalities yield

an identified set that contains the true parameter value whenever our instruments—i.e. the
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variables we assume agents know—form a subset of agents’ true information sets. While now

containing the true parameter, the size of the identified set nonetheless grows in the degree

to which agents’ true expectations differ from the expectations implied by the researcher’s

instruments. Third, we show that if our instruments coincide with the agent’s complete in-

formation set, the identified set defined by our inequalities includes only the true parameter.

Finally, we show that a researcher can use specification tests of moment inequality models

to test whether a vector of covariates belongs to agents’ information sets.

In our study of diabetes care, we use our claims data to quantify the determinants of

the physician’s treatment choice. We recover and compare estimates from both a traditional

maximum likelihood approach and our inequality approach. We then use the inequality

framework to test several assumptions on the content of physicians’ information sets, with the

goal of learning how physicians form their price expectations. Finally, we use our estimated

model to predict the effect of an intervention that provides patient-specific price information

to physicians at the point of prescribing.

In our application, we find that maximum likelihood estimates of preference parameters

vary significantly with the specification of the physician’s information set. For example,

for the own-price elasticity of a product in the choice set, our estimates imply an elastic-

ity equal to ´0.53 when we assume providers know the patient’s out-of-pocket costs for

each drug. When we instead assume providers form expectations with less information—

specifically, with information only on average prices by drug and insurance plan type—we

find an analogous own-price-elasticity equal to ´1.77. If instead we assume physicians know

only drug-specific averages of last year’s prices, the same elasticity equals ´3.77.

Importantly, the distinct informational assumptions and the corresponding parameter

estimates also imply different predictions for how demand reacts to counterfactual changes

in out-of-pocket costs. As an illustration, we consider a policy change in which three insurers,

who collectively account for around half of the patients in our sample, decide to cut a drug’s

out-of-pocket costs by 50%. Depending on which information set the researcher assumes,

the empirical model predicts the now cheaper product’s prescription share will increase

anywhere from 3.5 percentage points to 23.5 percentage points. Here, the models that assume

physicians know the most about prices predict the smallest increase, as these models, when

combined with the data, estimate relatively inelastic demand.

This sensitivity to informational assumptions, in both parameter estimates and coun-

terfactual predictions, motivates our move to a moment inequality framework. With our

inequalities, we test assumptions about physicians’ information sets before evaluating coun-

terfactual policies. In our setting, we reject the null hypothesis that physicians have perfect

information on out-of-pocket costs. Instead, our data and model suggest physicians in-
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corporate only coarse price information in their choices; specifically, we fail to reject that

physicians form expectations on out-of-pocket costs using either contemporaneous or lagged

average prices for each drug, or lagged average prices for each drug by insurance plan type.

By concluding that physicians form expectations about patient costs using only these aggre-

gate price measures, we depart from the more common approach in the literature that uses

realized patient costs in prescription drug choice models (see literature reviews by Goldman

et al., 2007; Baicker and Goldman, 2011).

Using our moment inequality model, we evaluate the effect of an intervention to change

physicians’ information. Here, we quantify the effect of moving from a setting in which

physicians form expectations using broad price averages—specifically, those averages that

our moment inequality estimates suggest compose a subset of physicians’ information sets—

to a counterfactual setting in which physicians know actual patient prices. When physicians

possess more detailed information, we predict a reduction in out-of-pocket costs of roughly

$5 to $10 per month, from a baseline of $46 per month. However, the 12 to 23% decline in

costs leads to a smaller surplus gain of between $0.10 and $0.24 per patient per month. Here,

the gap between the cost savings and surplus gains is due to differential drug quality. With

better information on patient prices, physicians switch patients from high quality expensive

drugs toward lower quality cheaper drugs.

Finally, we show the cost savings and surplus gains per patient from our informational

intervention would be smaller if we provided information only to endocrinology specialists.

Our estimates show that endocrinologists begin with better information on prices and are less

elastic with respect to expected prices; as a consequence, providing these specialists better

price information leads to an average reduction in monthly out-of-pocket costs of only $2 to

$5. Thus, if providing physicians with patient-specific prices at the point of prescribing is

costly, our analysis suggests a value of targeting this provision toward general practitioners.1

Our paper relates to several research areas. First, we contribute to a literature that

explores heterogeneity in physicians’ drug treatment decisions. This literature studies the

influence of several factors, including financial incentives (Iizuka, 2012; Dickstein, 2018),

advertising or detailing (Ching and Ishihara, 2012; Grennan et al., 2021), as well as the

interplay with secondary markets (Schnell, 2022) and competitive forces (Currie et al., 2023).

Our results emphasize the role that physician information plays in prescribing behavior: we

show that estimates of price responsiveness are biased if researchers mis-specify physicians’

information sets, and we present evidence that indicates physicians’ price information is

1Our finding that physicians are heterogeneous in their information and price sensitivity may reflect
differential training or a different population of patients: if endocrinologists treat more severely ill patients,
for example, their choices may reflect a preference for efficacy over price. Nonetheless, under either source
of heterogeneity, the per-patient savings from interventions that target primary care physicians are greater.
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imperfect. That physicians form price expectations using only aggregate price information

is consistent with Shrank et al. (2005), who use survey data to illustrate that physicians have

limited information on prices, and Carrera et al. (2018) and Desai et al. (2022), who show

that providers’ prescribing behavior reacts to informational shocks on out-of-pocket costs.

Second, our research relates to a literature studying the role of information frictions in

healthcare markets, summarized in Handel and Schwartzstein (2018). These frictions arise

in health insurance choice (Handel and Kolstad, 2015; Handel et al., 2019; Brown and Jeon,

2023), and also in the process through which physicians determine the quality of treatments

(Crawford and Shum, 2005; Chintagunta et al., 2009; Ching, 2010). We depart from this

literature in that we do not micro-found physicians’ information sets, but rather apply

moment inequalities to infer their content.

Finally, we contribute to a literature that uses moment inequalities to estimate agents’

preference parameters. This literature, reviewed in Kline et al. (2021), Kline and Tamer

(2023), and Canay et al. (2023), has early examples in Pakes (2010), Holmes (2011), and

Pakes et al. (2015). Previous applications of moment inequalities in the healthcare context

include Ho (2009), Ho and Pakes (2014), and Maini and Pammolli (2023). Applications in

other contexts include Eizenberg (2014), Illanes (2017), Wollmann (2018), Morales et al.

(2019), Fujiwara et al. (2023), and Houde et al. (2023). Our contribution is to generalize

the odds-based moment inequalities introduced in Dickstein and Morales (2018), and sub-

sequently applied in Bombardini et al. (2023), to discrete choice settings with more than

two, and possibly many, choices. In our model, we allow for individual- and choice-specific

unobserved preference heterogeneity, while also permitting agents to have unobserved ex-

pectations over a product characteristic, like price. In this way, our approach can handle

many discrete choice settings in which agents face uncertain product attributes.

The rest of the paper proceeds as follows. In Section 2, we describe our setting and data,

and present statistics that motivate our analysis. In sections 3 and 4, we present a model of

prescription drug choice and introduce the inequalities we use for estimation. In Section 5,

we present simulation results comparing the properties of our moment inequality estimator

to those of maximum likelihood estimators. We present our estimates and counterfactual

results in sections 6 and 7, and test for heterogeneity in Section 8. Section 9 concludes.

2 Empirical Setting and Data

Our analysis focuses on care for type 2 diabetes patients. In Section 2.1, we describe the

treatments typically prescribed for diabetes patients. In Section 2.2, we present our data

along with descriptive statistics on out-of-pocket costs and physicians’ treatment choices.
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2.1 Diabetes Care

The treatment of type 2 diabetes often begins with a diagnosis based on abnormal test results

for either fasting plasma glucose or hemoglobin A1c. The treatment’s goal is to achieve a

particular A1c level (ADA, 2017). Treatment usually starts with metformin, a generic drug.

If the patient fails to achieve the A1c goal after three months, the clinician may start the

patient on dual combination therapy. At this stage, physicians must choose among several

alternative drug classes, including DPP-4 inhibitors, GLP-1 agonists, and SGLT2 inhibitors.

We focus on this set of drug classes in our analysis. The choice across these classes depends

on medical factors.2 We treat the choice of class as given exogenously by the patient’s health

status, and focus on the choice of treatment within class as a function of price and efficacy.

2.2 Data

We use data from Oregon’s All-Payers All-Claims (APAC) database for the years 2011-2016.

Our sample includes both medical and prescription drug claims for patients with private

insurance through the individual insurance market and through group insurance.3 For each

medical claim, we observe the patient’s diagnosis as well as patient demographics, insurance

coverage, and the identity of the patient’s healthcare provider. We link these medical claims

to the patient’s drug claims, where we observe the treatment prescribed and the patient’s

out-of-pocket cost. In addition, we complement the information on a physician’s background

in the APAC data by validating the physician’s characteristics in two public registries that

contain information on the provider’s specialty, gender, and medical school graduation year.4

Sample creation. To form our sample, we include only claims where the identity of

providers, patients, and treatments verify certain restrictions. First, we restrict our sample

to claims in which the physician’s specialty is one that typically provides primary care for

diabetes patients, including family medicine, internal medicine, pediatrics, obstetrics and

gynecology, and endocrinology. We also include non-physician providers, such as nurse

practitioners, who can prescribe treatments for diabetes patients.5 Second, we focus only

on patients who both receive a diagnosis of type 2 diabetes and who are prescribed a drug

in one of three treatment classes: DPP-4 inhibitors, GLP-1 agonists, and SGLT2 inhibitors.

2The classes differ in their efficacy, risk of hypoglycemia, likelihood for weight gain, and other side effects.
3In March 2016, the US Supreme Court, in Gobeille v. Liberty Mutual Insurance Company, created an

exemption that allows self-insured plans to opt out of reporting their claims to a state’s all-payers database.
Following that decision, we lose claims for a portion of self-insured plans.

4Specifically, we use the National Plan and Provider Enumeration System registry and the Doctors and
Clinicians National Downloadable File.

5Throughout the paper, we use “physician” as shorthand for both medical doctors and other providers
who prescribe treatments in our sample.
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Finally, we additionally restrict our sample in several minor ways, such as excluding drug

observations that reflect refills rather than active choices by a physician. In Appendix A.1,

we detail the steps we follow to build our sample.

The resulting sample includes 184,783 claims prescribed by 4,990 providers for a set of

35,721 patients. Close to 70% of providers are primary care physicians with specialties in

internal medicine or family medicine; 2% of physicians are endocrinologists with expertise

in metabolic diseases like diabetes; and the remaining 28% are non-physician providers or

providers with other specialties including obstetrics and gynecology. Although endocrinol-

ogists make up a small fraction of providers in our sample, they account for a larger share

of claims: on average, endocrinologists record 51 claims per quarter in our sample, relative

to 14 per quarter for primary care physicians, and only 9 per quarter for non-physician

providers or physician providers with other specialties.

The average patient age is 55 years old. Among the insurance plan type options, 46%

of patients enroll in a preferred provider organization (PPO) plan and 33% choose either

a health maintenance organization (HMO) or point-of-service (POS) plan. The remaining

21% have self-insured plans. Among the set of insurers, the largest carrier enrolls 25% of the

patients, and the top four carriers by patient volume jointly account for 70% of patients.

Drug choice set. In the three drug classes we consider, the set of choices available to

physicians varies from three to four drug treatments. In all three classes, the most popular

treatment accounts for approximately 70% of non-refill drug claims, with the remaining 30%

distributed roughly equally across all other available treatments.

We use copayments as our measure of the out-of-pocket costs patients face when filling a

prescription. Unlike coverage for inpatient and outpatient services, it is rare for the plans in

our sample to use either deductibles or coinsurance for prescription drug spending.6 When

specifying the copayment levels for each drug and plan, however, we face a missing data

problem. We do not observe the full drug formulary at the plan level; using our claims data,

we can only infer copayments using observations from patients who filled a prescription. To

generate the full cost list for a plan, we employ a random forest model that uses our observed

data to impute missing drug prices for all plans and years. We provide more detail on this

imputation in Appendix A.2.

In Table 1, we report summary statistics of the distribution of copayments. The statistics

show significant heterogeneity in out-of-pocket costs. Looking within drug, and focusing on

the drug Janumet in the DPP-4 inhibitor class as an example, we see in panel A that the

mean monthly price is close to $42 with a standard deviation of $28 per month. The implied

coefficient of variation is thus 0.67; across the drugs in the classes we study, the coefficient

6Deductibles and coinsurance are non-zero for 3% and 4% of the patients in our sample, respectively.
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Table 1: Distribution of Monthly Out-Of-Pocket Costs

Panel A: By Drug - Variation Across Plans

Drug Class Drug Mean St. Dev. IQR

DPP-4 Inhibitors
Janumet 41.76 28.18 20.46
Januvia 44.29 29.53 26.71

Tradjenta 46.52 22.53 23.08

GLP-1 Agonists
Bydureon 50.42 39.62 38.30

Byetta 52.11 40.50 37.25
Trulicity 59.18 37.16 37.17
Victoza 61.68 44.62 45.32

SGLT2
Farxiga 64.43 51.97 65.78

Invokana 57.63 40.11 61.49
Jardiance 56.06 34.44 42.67

Panel B: By Carrier - Variation Across Plans and Drugs

Drug Class Carrier Mean St. Dev. IQR

DPP-4 Inhibitors

A 42.16 15.69 15.89
B 36.77 22.70 23.51
C 79.95 31.72 43.42
D 32.23 13.51 17.69

GLP-1 Agonists

A 51.59 24.58 17.01
B 35.53 21.78 23.46
C 111.05 39.28 38.70
D 37.32 19.78 21.84

SGLT2

A 49.58 22.19 21.42
B 44.19 35.06 43.03
C 104.54 39.36 52.55
D 32.07 18.02 22.80

Note: We report summary statistics of the distribution of out-of-pocket costs (in $ per
month) in our sample. In each panel, we report the mean, standard deviation (St. Dev.),
and interquartile range (IQR). St. Dev. and IQR are computed after residualizing out-
of-pocket costs to take out drug-year fixed effects (in panel A) or carrier-year fixed
effects (in panel B). Panel A reflects variation in prices across all plans within a drug;
while panel B reflects variation across plans and drugs within a carrier.

of variation is similar, ranging from 0.48 to 0.81. In panel B, we report statistics of the price

variation across drugs and plans offered by each of the top four carriers. The dispersion

in prices within a carrier is slightly smaller than the price dispersion within drug, with

coefficients of variation that vary between 0.35 and 0.79, depending on the carrier and class.

With significant heterogeneity in copayments, both across insurance plans for a given

drug as well as across drugs and plans for a given carrier, physicians may find it difficult to

8



predict the specific copayment an insured patient would face for each drug. In the left panel

of Figure 1, we show physicians indeed prescribe the cheapest drug at roughly the same rate

as if they had chosen the prescribed drug randomly. In the right panel, we show that, relative

to a world in which physicians always choose the cheapest drug within a class, patients face

additional out-of-pockets costs per month of between $10 (for DPP-4 Inhibitors) and $20

(for GLP-1 Antagonists) on average under the observed distribution of choices.

The choice pattern in Figure 1 could arise due to physician preferences for efficacy over

price, or could reflect physicians’ lack of information about a given patient’s out-of-pocket

costs for each drug in the choice set. The heterogeneity in prices reported in Table 1 may also

reflect some noise due to our need to predict copayments for drug-plan pairs not observed

in the data. To better understand physicians’ information and their preferences, we move

next to present a model that accounts for the possibility that physicians possess imperfect

information about patient prices as well as for possible quality differences across drugs in

the choice set. In addition, in Section 4, we outline an estimation approach that can account

for classical measurement error in our observed price measure.

Figure 1: Out-of-pocket Costs and Physicians’ Choices
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Notes: In panel (a), by drug class, we report the observed probability of choosing the drug with the lowest out-of-pocket
cost. We compare this observed probability to a hypothetical setting in which the physician chooses each drug with equal
probability. In panel (b), we report the mean difference in monthly copayments between the observed drug chosen for a
patient and the cheapest drug available to that patient in the class.

3 Model of Prescription Choice

We model a physician’s choice of prescription drug within a class at each patient visit. We

index visits by i and drugs by j. At each visit i, we assume the physician’s utility from

choosing drug j is

Uij “ uij ` εij, (1a)
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uij “ κj ` αpij, (1b)

where pij denotes the out-of-pocket cost of treatment j for the patient at visit i, α captures

the physician’s sensitivity to patient costs, and κj and εij capture the common and idiosyn-

cratic components of the quality of treatment j, respectively.7 Defining a binary variable dij

that equals one if the physician prescribes drug j at visit i (and zero otherwise), we assume

dij ” 1tErUij|Jis ě max
j1“1,...,J

ErUij1 |Jisu, for j “ 1, . . . , J , (2)

where J denotes the cardinality of the set of drugs that the physician could have prescribed

at visit i; Ji denotes the physician’s information set at visit i; and Er¨|Jis is a conditional

expectation operator reflecting the physician’s beliefs. We assume physicians’ expectations

are rational and, thus, for any random vector Ai, ErAi|Jis denotes the expectation with

respect to the distribution of Ai conditional on Ji in the population of office visits of interest.

We impose the following assumptions on physicians’ information sets:

Ji “ pWi, εiq, (3a)

pα, κq ĎWi, (3b)

where κ “ tκju
J
j“1, εi “ tεiju

J
j“1 and, for any two random vectors Ai and Bi, we use

Ai Ď Bi to denote that the distribution of Ai conditional on Bi is degenerate. As indicated

in equation (3a), the information set Ji thus includes the vector of idiosyncratic shocks, εi,

and all variables in Wi. Equation (3b) imposes that Wi includes the price sensitivity α, and

the drug quality terms κ, but other variables may also enter that set.

We impose two sets of assumptions on the distribution of εi. First, we assume that

Fεpεi|Wiq “ Fεpεiq “ expp´
J
ÿ

j“1

expp´εijqq, (4)

where Fεp¨q denotes the cumulative distribution function of εi. Equation (4) imposes that

εi is independent of all other elements of the physician’s information set, as included in

Wi. The equation also imposes that, for any visit i, εij is independent and identically

distributed across all j “ 1, . . . , J , and follows a type I extreme value distribution with

location parameter equal to zero and scale parameter equal to one. Second, we assume that

Erpi|Jis “ Erpi|Wis, (5)

7We use quality to denote the drug’s efficacy, side effect profile, or the ease of prescribing the drug.
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where pi “ tpiju
J
j“1. Equation (5) imposes that, once we condition on all other elements of

the physician’s information set, the vector of idiosyncratic shocks εi does not provide any

additional information that helps the physician forecast the patient’s out-of-pocket costs.8

Equations (1), (3), and (5) imply

ErUij|Jis “ Eruij|Wis ` εij “ κj ` αErpij|Wis ` εij, for j “ 1, . . . , J, (6)

where the first equality is implied by equations (1a), (3a), and (5), and the second equality

is implied by equations (1b) and (3b). Equations (2) and (4) further imply that we can write

the probability that drug j is prescribed given Wi as

Ppdij “ 1|Wiq “
exppκj ` αErpij|Wisq

řJ
j1“1 exppκj1 ` αErpij1 |Wisq

for j “ 1, . . . , J. (7)

If we assume physicians have perfect information on prices and, thus, Erpi|Wis “ pi, our

model becomes a multinomial logit model with choice-specific fixed effects. If we place

no restrictions on how physicians form their price predictions, observing the conditional

probabilities, Ppdij “ 1|Wiq for all j “ 1, . . . , J , generally does not allow a researcher to

distinguish how a physician’s preference parameters pκ, αq or information set, Wi, affect

her treatment choices. As a middle ground, we show in Section 4 that the assumption that

physicians’ expectations are rational is enough to learn both about the content of physicians’

information set as well as about the value of their preference parameters.

To clarify how we will later apply our model to study diabetes drug choices, we comment

on two additional features of the model. First, although formally physicians choose the

prescription drug in our set-up, their patients’ information and preferences may influence

their choices. Thus, the drug qualities, tκju
J
j“1, the price sensitivity, α, and the physician’s

information on prices, Wi, may partly reflect patient input. Second, we emphasize again

that the subindex i on pij implies that drug j’s out-of-pocket costs may vary across visits,

consistent with the statistics in Table 1. Similarly, the subindex i on Wi implies that

physicians’ information about drug prices may vary across visits. Thus, in our setting, we

allow patients to face different drug prices depending on their plan, and we allow physicians

to have different information about the out-of-pocket costs of patients on different plans.9

8If pi ĎWi and, thus, the physician at visit i has perfect information on pi, equation (5) naturally holds.
However, equation (5) is also compatible with the physician having imperfect information on pi; it simply
requires that all information relevant to the physician’s forecast of pi is included in Wi.

9Conversely, equations (1) and (4) impose restrictions on the distribution of drug qualities. Quality is
the sum of the component κ, common across all visits, and the idiosyncratic component, εi. The common
quality component matches the empirical setting we study: when we condition on specific classes of diabetes
treatments, the patients treated will have similar health statuses and similar treatment effects under drug j.
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Finally, we assume the researcher collects a random sample of N visits. For each visit

in the sample, we assume the researcher observes the drug prescribed, di “ tdiju
J
j“1; the

out-of-pocket costs for each drug, pi “ tpiju
J
j“1; and, a set of variables that may be used to

predict these out-of-pocket costs, zi “ tziju
J
j“1. Here, zij is a vector of covariates correlated

with pij that may belong to Wi; e.g., zij may include the average out-of-pocket cost of drug

j across subsets of insurance plans. Crucially, we do not assume the researcher observes the

complete set Wi for any visit.

Given a normalization κ1 “ 0, the goal of estimation is to recover the value of the

parameters tκju
J
j“2 and α, and to learn about the content of the information sets tWiu

N
i“1. To

acquire knowledge about tWiu
N
i“1, the researcher can test the null hypothesis that zi belongs

to the information set Wi of every physician in a group of interest; i.e., the researcher tests

H0 : zi Ď Wi for a subset of visits. To simplify the notation, we use θ ” pθα, θκ2 , . . . , θκJ q

to denote the unknown parameter vector, Θ to denote the parameter space, and θ˚ ”

pα, κ2, . . . , κJq to denote the true parameter value, which is determined by equation (7).

4 Moment Inequalities

In this section, we show how to partially identify θ˚. We use two types of moment inequalities,

odds-based and bounding inequalities, which we describe in sections 4.1 and 4.2, respectively.

In Section 4.3, we discuss how we use these inequalities to compute a confidence set for θ˚.

4.1 Odds-based Inequalities

For any two drugs j and j1, any value of zi in its support, and any θ P Θ, we define the

following odds-based moment inequality

m
o
jj1pzi, θq ě 0 (8a)

with

m
o
jj1pzi, θq ” Erdij expp´pθκj ´ θκj1 ` θα∆pijj1qq ´ dij1 |zis, (8b)

and ∆pijj1 “ pij ´ pij1 . We denote as Θo
0 the set of values of θ that jointly satisfy the

inequality in equation (8) for every value of zi in its support and all pairs of drugs j and j1

in the physician’s choice set. Formally, denoting as Z the support of zi, we define

Θo
0 ” tθ P Θ: mo

jj1pz, θq ě 0 for all z P Z, j “ 1, . . . , J , and j1 “ 1, . . . , Ju. (9)

Theorem 1 establishes a sufficient condition for the true parameter value θ˚ to belong to Θo
0.
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Theorem 1 Let θ˚ ” pα, κ2, . . . , κJq be defined by equation (7) and the normalization κ1 “

0. If zi ĎWi, then θ˚ P Θo
0.

Theorem 1 indicates that, when evaluated at the true parameter value, the inequality in

equation (8) holds if zi belongs to the information set Wi for every visit i in the population

of interest. This inequality holds regardless of the value of zi on which we condition, and

holds for any two drugs j and j1 we may use to define the moment, as long as these drugs could

have been prescribed by all healthcare providers in the population of interest. We provide

an intuitive explanation of Theorem 1 below. The formal proof appears in Appendix B.1.

The moment inequality in equation (8) is a generalization to multinomial settings of the

odds-based inequality introduced in Dickstein and Morales (2018) for binary choice models.10

To understand why the inequality in equation (8) holds for θ “ θ˚, a key equation is

Erdij|Wis

Erdij1 |Wis
“ expp∆κjj1 ` αEr∆pijj1 |Wisq, (10)

with ∆κjj1 “ κj ´ κj1 . Equation (7) implies equation (10) for any drugs j and j1 in the

physician’s choice set and any information set Wi. Reordering the terms in equation (10),

we obtain

Erdij expp´p∆κjj1 ` αEr∆pijj1 |Wisq ´ dij1 |Wis “ 0. (11)

As the moment function in equation (11) is convex in the unobserved expectationEr∆pijj1 |Wis

and physicians’ expectational errors are mean zero (as implied by the assumption of rational

expectations), Jensen’s inequality implies that

Erdij expp´p∆κjj1 ` α∆pijj1q ´ dij1 |Wis ě 0. (12)

This inequality also holds if the variable ∆pijj1 is affected by classical measurement error in

prices, as classical measurement errors and expectational errors have the same properties in

our setting. Finally, applying the Law of Iterated Expectations, we conclude that

Erdij expp´p∆κjj1 ` α∆pijj1q ´ dij1 |zis ě 0, (13)

for any zi ĎWi, proving Theorem 1 in this way.

10A restriction imposed in the multinomial model in Section 3 that is not imposed in the binary model in
Dickstein and Morales (2018) is the requirement that εi follows a type I extreme value distribution. In the
binary choice case, Dickstein and Morales (2018) show one can derive inequalities analogous that in equation
(8) if the distribution of εij ´ εij1 is log-concave; thus, εij can follow multiple distributions, including the
normal distribution.
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To gain intuition on why inequalities of the type in equation (8) provide non-trivial

bounds, consider the following specific cases of the general inequality in equation (8):

Erdi1 expp´p´θκ2 ` θα∆pi12qq ´ di2|zis ě 0, (14a)

Erdi2 expp´pθκ2 ` θα∆pi21qq ´ di1|zis ě 0, (14b)

where we have imposed the normalization κ1 “ 0 and, as a reminder, θα and θκ2 are unknown

parameters with true values α and κ2, respectively. The function exppxq goes to 0 as x goes

to ´8; thus, given a value of θα, equation (14a) provides a finite lower bound on θκ2 and,

similarly, equation (14b) provides a finite upper bound on θκ2 . Theorem 1 guarantees that,

if θα “ α, κ2 belongs to the interval defined by these bounds.

4.2 Bounding Inequalities

For any two drugs j and j1 in the physician’s choice set, any value of zi in its support Z,

and any function ejj1 : Z ˆΘ Ñ R, we define the following bounding moment inequality

m
b
jj1pzi, θ, ejj1p¨qq ě 0 (15a)

with

m
b
jj1pzi, θ, ejj1p¨qq ”

Erdij1 ´ dij expp´ejj1pzi, θqqp1` ejj1pzi, θq ´ pθκj ´ θκj1 ` θα∆pijj1qq|zis. (15b)

The moment mb
jj1p¨q depends on ejj1pzi, θq, which is a deterministic function of the observed

vector zi and the unknown parameter vector θ, and may vary by pair of drugs j and j1.

Defining e as the set of functions that includes the function ejj1p¨q for all drug pairs (i.e., e “

tejj1p¨qu
J,J
j“1,j1“1), we denote as Θb

0peq the set of values of θ that jointly satisfy the inequality

in equation (15) for every value of zi in its support, and every pair of drugs j and j1 in the

physician’s choice set. Formally,

Θb
0peq ” tθ P Θ: mb

jj1pz, θ, ejj1p¨qq ě 0 for all z P Z, j “ 1, . . . , J , and j1 “ 1, . . . , Ju. (16)

Regardless of the set e used to build the moment inequalities in equation (15), the following

theorem establishes a sufficient condition for the true parameter value θ˚ to belong to Θb
0peq.

Theorem 2 Let θ˚ ” pα, κ2, . . . , κJq be defined by equation (7) and the normalization κ1 “

0. If zi ĎWi, then θ˚ P Θb
0peq for any set e of functions ejj1 : Z ˆΘ Ñ R.

Theorem 2 indicates that, when evaluated at the true parameter value, the inequality in
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equation (15) holds if, for every visit i in the population of interest, zi belongs to Wi and

the two drugs j and j1 could have been prescribed by the corresponding healthcare provider.

Importantly, this inequality holds regardless of the set of functions e used to build the

bounding moment inequalities, as long as they are deterministic functions of zi and the

unknown parameter vector θ. We provide an intuitive explanation of Theorem 2 below. The

formal proof appears in Appendix B.2.

The bounding inequality in equation (15) was first introduced in Fujiwara et al. (2023)

for the case in which ejj1pzi, θq “ ě for a constant ě P R. We show the inequality in equation

(15) holds more generally for any ejj1 : Z ˆ Θ Ñ R and, by increasing the set of functions

ejj1p¨q we consider, we obtain bounding inequalities that yield tighter bounds on θ˚. To

understand why the inequality in equation (15) holds for θ “ θ˚, we first multiply equation

(11) by ´1, obtaining the equality

Erdij1 ´ dij expp´p∆κjj1 ` αEr∆pijj1 |Wisq|Wis “ 0. (17)

As ´ expp´xq is concave in x, a first-order approximation to it around any point bounds it

from above. Thus, for any ejj1 : Z ˆΘ Ñ R, we derive from equation (17) the inequality:

Erdij1 ´ dij expp´ejj1pzi, θ
˚
qqp1` ejj1pzi, θ

˚
q ´ p∆κjj1 ` αEr∆pijj1 |Wisqq|Wis ě 0, (18)

where ejj1pzi, θ
˚q is the point around which the first-order approximation is taken. If zi ĎWi,

properties of rational expectations imply the sign of the inequality in equation (18) is pre-

served when introducing the price difference, ∆pijj1 , in place of the unobserved expectation,

Er∆pijj1 |Wis. In this way, we obtain the inequality:

Erdij1 ´ dij expp´ejj1pzi, θ
˚
qqp1` ejj1pzi, θ

˚
q ´ p∆κjj1 ` α∆pijj1qq|Wis ě 0. (19)

This inequality also holds if the variable ∆pijj1 is affected by classical measurement error in

prices. Finally, applying the Law of Iterated Expectations, we conclude that

Erdij1 ´ dij expp´ejj1pzi, θ
˚
qp1` ejj1pzi, θ

˚
q ´ p∆κjj1 ` α∆pijj1qq|zis ě 0. (20)

for any zi ĎWi, proving Theorem 2 in this way.

To gain intuition on why the bounding inequalities provide non-trivial bounds, consider

the following specific cases of the general type of inequality introduced in equation (15):

Erdi2 ´ di1 expp´ei12pziqqp1` ei12pziq ´ p´θκ2 ` θα∆pi12qq|zis ě 0, (21a)
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Erdi1 ´ di2 expp´ei21pziqqp1` ei21pziq ´ pθκ2 ` θα∆pi21qq|zis ě 0, (21b)

where, for simplicity, we use a function ejj1p¨q that is constant in θ. The moments in equations

(21a) and (21b) are linearly decreasing and increasing, respectively, in θκ2 . Thus, given

a value of θα, equations (21a) and (21b) identify finite upper and lower bounds on θκ2 ,

respectively. Theorem 2 guarantees that, if θα “ α, κ2 belongs to the interval defined by

these bounds.

For any two drugs j and j1, using the inequality in equation (15) for estimation requires

choosing a function ejj1p¨q. This choice is consequential for the size of the identified set Θb
0peq

and, as shown in Appendix B.3.1, Θb
0peq is minimized when, for every pair of drugs j and j1,

ejj1pzi, θq “ e˚jj1pzi, θq with e˚jj1pzi, θq “ θκj ´ θκj1 ` θαEr∆pijj1 |zi, dij “ 1s. (22)

Furthermore, if ejj1p¨q “ e˚jj1p¨q for every pair of drugs j and j1, and the vector zi is such that

Erpi|zis “ Erpi|Wis, (23)

the inequalities in equation (15) point identify θ˚. That is, defining e˚ “ te˚jj1p¨qu
J,J
j“1,j1“1, it

holds that Θb
0pe

˚q “ θ˚. We prove this result formally in Appendix B.3.2.

As we show in Section 5, given a vector zi of observed predictors of the choice charac-

teristic pi, a maximum likelihood estimator (MLE) that uses Er∆pijj1 |zis as a proxy for the

unobserved expectation Er∆pijj1 |Wis is a consistent estimator of θ˚ if and only if equation

(23) holds—that is, if and only if the researcher correctly specifies the agent’s expectations.

The MLE is inconsistent otherwise. The advantage of using the inequalities in equation (15)

together with the approximation points in equation (22) is that (a) these inequalities yield

an identified set that always contains the true parameter value (see Theorem 2) and, (b)

when equation (23) holds for every j and j1, the identified set shrinks to include only the

true parameter value. Thus, in settings in which the MLE is a consistent estimator of θ˚,

using the inequalities in equation (15) instead does not entail a loss of identification power.

In settings in which the MLE is not a consistent estimator of θ˚, these inequalities still yield

an identified set that includes θ˚.11

4.3 Using Inequalities for Estimation

We combine odds-based and bounding moment inequalities for estimation. The inequalities

in equations (8) and (15) are defined for every ordered pair of drugs pj, j1q and every value

11As we show in Section 5, when the MLE is inconsistent, Θb
0peq may not include the plim of the MLE.
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of zi in its support. In our setting, zi is continuous and, thus, exploiting the information

contained in all these inequalities is computationally challenging.12 Instead, we compute

confidence sets for θ˚ using a finite number of unconditional moment inequalities implied by

the conditional ones in equations (8) and (15). Specifically, for each ordered pair of drugs

pj, j1q, and each instrument function gk : Z Ñ r0,8q in a set GK “ tgkp¨quKk“1, we use the

odds-based moment inequality

Erpdij expp´pθκj ´ θκj1 ` θα∆pijj1qq ´ dij1qgkpziqs ě 0, (24)

and the bounding moment inequality

Erpdij1 ´ dij expp´e˚jj1pzi, θqqp1` e
˚
jj1pzi, θq ´ pθκj ´ θκj1 ` θα∆pijj1qqqgkpziqs ě 0, (25)

where e˚jj1p¨q is defined in equation (22). Thus, given a choice set of size J and K instrument

functions, we use 2JpJ ´ 1qK inequalities to compute a confidence set for a vector with J

elements: the drug fixed effects pκ2, . . . , κJq and the price coefficient α. In our application,

zi is a scalar and every instrument function gkp¨q is an indicator function; we describe in Ap-

pendix B.4 the instrument functions we use. In our baseline results, we compute confidence

sets for θ˚ following the inference procedure for unconditional moment inequalities in Cox

and Shi (2023); we describe in Appendix B.5 our implementation of this procedure.

5 Simulation

Before estimating our model on actual physician choices, we perform a simulation exercise.

We design the simulation with the goal of comparing the properties of the MLE with our

moment inequality estimator. We examine settings in which the researcher only partially ob-

serves the agent’s information set or in which agents form expectations with error. Through

this simulation, we first show that the MLE is inconsistent unless the researcher’s assumed

information set coincides exactly with the agent’s information set. Conversely, consistent

with theorems 1 and 2, the odds-based and bounding moment inequalities are satisfied at

the true parameter value as long as the researcher correctly identifies a subset of the agent’s

information set. Second, we show that both the odds-based and bounding moment inequal-

ities are useful for identifying parameters; i.e. neither type of moment is redundant. Third,

12Andrews et al. (2022) and Cox and Shi (2023) contain computationally convenient procedures for
subvector inference in conditional moment inequality settings in which the nuisance parameters enter linearly
and the associated covariates depend only on the instruments. No parameter enters linearly in the moment
in equation (8), and all parameters are multiplied by dij (which does not belong to the vector of instruments)
in the moment in equation (15), Those procedures are not applicable in our context.
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we discuss the size of the confidence set we find using the inequalities, and in particular when

this set is likely to include many parameter values in addition to the true value. Finally, we

show how our inequalities can be used to test hypotheses about the variables agents know

and use when forming expectations.

5.1 Simulation Set-up

We simulate data for i “ 1, . . . , N observations, with N “ 4, 000, 000, using the model in

Section 3. We assume agents choose between three choices, j “ t1, 2, 3u, and we set the

choice-specific quality levels to κ1 “ κ2 “ 0 and κ3 “ 1, and the price coefficient to α “ 1.

Unlike in the model in Section 3, we need to specify the data generating process of the price

vector pi, and the content of the information set Wi, as these determine the choices of the

simulated observations.

For every choice j, we impose the following data generating process for price: pij “

x1ij ` x2ij ` x3ij, with xkij independent of both εi and xk1i1j1 for k ‰ k1, i ‰ i1, or j ‰ j1, and

distributed uniformly with a support that increases in a parameter σk.
13

We impose that the agent’s price expectations depend only on x1i and x2i, with xki “

txkiju
3
j“1 for all i and k “ 1, 2, 3. That is, Wi “ pκ, α, x1i, x2iq and thus Erpij|Wis “ x1ij`x2ij

for j “ 1, 2, 3 and all i. The agent thus does not have perfect foresight, and x3i represents

her expectational error.14 We also assume that, for each observation, the researcher only

observes pdi, pi, x2iq. Thus, x1i captures variables on which the agent conditions her decision

but which the researcher does not observe.

Unless otherwise noted, we compute confidence sets using the inequalities in equations

(24) and (25) for all six possible drug pairs and the following two instrument functions:

g1px2iq “ 1t∆x2ijj1 ě 0u and g2px2iq “ 1t∆x2ijj1 ă 0u. (26)

with ∆x2ijj1 “ x2ij ´ x2ij1 . We also report MLEs computed as

argmax
pθα,θκ2 ,θκ3 q

#

N
ÿ

i“1

3
ÿ

j“1

1tdij “ 1u ln

˜

exppθκj ` θαx2ijq
ř3
j1“1 exppθκj1 ` θαx2ij1q

¸+

, with θκ1 “ 0.

Thus, while the inequality estimates correctly assume that x2i belongs to physician i’s in-

13The support of xkij is rµkj ´ σk, µkj ` σks for k “ 1, 2, 3. We fix µ22 “ ´0.5 and µ23 “ ´1, and set
µkj “ 0 for all other k and j. Thus, choices decline in mean price in order from j “ 1 to j “ 3. We fix the
length of the support of x2ij to equal 8 (i.e., σ2 “ 4) and present results for different values of σ1 and σ3.

14In detail, Erpij |Wis “ x1ij`x2ij`Erx3ij |x1ij , x2ijs, with Erx3ij |x1i, x2is “ 0 because xki is independent
of xk1i for k ‰ k1 and µ3j , the mean of x3j , equals zero.
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formation set, the MLEs impose that Erpij|Wis “ x2ij, which is correct only when σ1 “ 0.

5.2 Simulation Results

We report the main simulation results in Table 2.15 In case 1, we explore the scenario in

which the researcher observes all variables on which the agent bases her decision (i.e., σ1 “ 0

and, thus, x1i “ 0 for all i) and agents make no expectational error (i.e., σ3 “ 0 and, thus,

x3i “ 0 for all i). In this case, the MLE coincides with the true parameter vector, and

the confidence sets defined by the odds-based and the bounding moment inequalities both

include only one parameter value, the true one.

In case 2, we consider a scenario in which, as in case 1, the researcher observes the agent’s

information set (i.e., σ1 “ 0), but agents now make expectational errors (i.e, σ3 ą 0). The

results show that neither the MLE nor the confidence set defined by the bounding moment

inequalities are affected by the presence of expectational errors; conversely, the confidence

set defined by the odds-based moment inequalities is no longer a singleton, including the

true value but also other values of the parameter vector.

In case 3, we consider the scenario in which agents make no expectational errors (i.e, σ3 “

0) but the researcher only observes part of the agent’s information set (i.e., σ1 ą 0). When

the true information set is px1i, x2iq but the research assumes it includes only x2i, the MLE is

asymptotically biased downwards by a scaling factor that decreases in σ1.16 In the presence

of unobserved elements of the agent’s true information set, the confidence sets defined by

the odds-based and by the bounding inequalities nonetheless contain the true value, θ˚.

However, they also include other values of the parameter vector; the number of additional

points included in the confidence sets increases in the importance of the unobserved variable,

x1i, in the agent’s price expectations. For example, in case 3(a), when σ1 is small and, thus,

the unobserved element x1i contributes little to agents’ price expectations, the confidence set

we obtain when combining the odds-based and the bounding moment inequalities includes

only the true parameter value. In contrast, when σ1 becomes larger in case 3(b), the resulting

confidence set grows and includes points beyond the true parameter value.

In case 4, we consider a setting in which researchers do not observe all the variables

agents use to form expectations (i.e., σ1 ą 0) and agents have imperfect information about

the payoff variables they must forecast (i.e., σ3 ą 0). This case, which is likely the most

empirically relevant setting, combines the complications present separately in cases 2 and

15The confidence sets reported in Table 2 are computed following Cox and Shi (2023). In Table C.3 in
Appendix C.3.3, we present analogous confidence sets computed following Andrews and Soares (2010).

16That is, as σ1 increases, the parameter estimates move towards zero unless the true parameter value is
zero. If the true parameter value is zero, as it is for κ2, its MLE remains consistent.
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Table 2: Simulation Results - MLE and Confidence Intervals

Case σ1 σ3 zi Estimator
MLE & Confidence Sets

α κ2 κ3

1 0 0 x2i

MLE 1 0 1
Odds-based [1 , 1] [0 , 0] [1 , 1]
Bounding [1 , 1] [0 , 0] [1 , 1]

Both [1 , 1] [0 , 0] [1 , 1]

2 0 1 x2i

MLE 1 0 1
Odds-based* [0.92 , 1.50] [-0.33 , 0.33] [0.67 , 1.33]

Bounding [1 , 1] [0 , 0] [1 , 1]
Both [1 , 1] [0 , 0] [1 , 1]

3(a) 1 0 x2i

MLE 0.91 0 0.91
Odds-based* [1 , 1] [0 , 0] [1 , 1]

Bounding [0.80 , 1.10] [-0.30 , 0.30] [0.70 , 1.30]
Both [1 , 1] [0 , 0] [1 , 1]

3(b) 2 0 x2i

MLE 0.75 0 0.75
Odds-based* [1 ,1]Y[1.15 , 2.50] [-1.50 , 1.50] [-0.50 , 2.50]

Bounding [0.50 , 1.50] [-1 , 1] [0 , 1.95]
Both [1 ,1]Y[1.15 , 1.50] [-0.15 , 0.15] [1 , 1.40]

4 1 1 x2i

MLE 0.92 0 0.91
Odds-based* [0.92 , 1.50] [-0.48 , 0.50] [0.65 , 1.50]

Bounding [0.80 , 1.10] [-0.30 , 0.30] [0.70 , 1.30]
Both [0.92 , 1.10] [-0.33 , 0.30] [0.70 , 1.30]

5 0 1 pi

MLE 0.87 -0.03 0.87
Odds-based H H H

Bounding [0.87 , 0.87] [-0.05 , -0.03] [0.85 , 0.88]
Both H H H

Note: MLE denotes the maximum likelihood estimate. Odds-based, Bounding, and Both contain projections on each
parameter of 95% confidence sets computed as in Cox and Shi (2023). Odds-based indicates the confidence set is computed
using inequalities of the type in equation (24); Bounding indicates the confidence set is computed using inequalities of the
type in equation (25); Both indicates it is computed using both types of inequalities. In cases 1 to 4, we use the instrument
functions in equation (26). In case 5, we use the instrument functions g1ppiq “ 1t∆pijj1 ě 0u and g2ppiq “ 1t∆pijj1 ă 0u.
In all cases other than 3(b), confidence sets are computed using a 3-dimensional grid whose sides are r0.5, 1.5s (for α),
r´0.5, 0.5s (for κ2) and r0.5, 1.5s (for κ3). In case 3(b), we use a grid whose sides are r´0.5, 2.5s (for α), r´1.5, 1.5s (for κ2)
and r´0.5, 2.5s (for κ3). We mark with an asterisk when the confidence set includes points outside the grid.

3. We observe the MLE is asymptotically biased downwards, inheriting the bias present in

case 3. The confidence sets defined by odds-based inequalities, bounding inequalities, or by

both sets of inequalities together, include the true parameter value, but also other values.

Considering the results from cases 1 through 4 together, we emphasize two additional

properties of our inequalities. First, we cannot conclude that the confidence sets defined by

the odds-based moment inequalities only, or by the bounding inequalities only, are always

weakly smaller than the confidence sets defined by both types of inequalities; in fact, in some

settings (e.g., in cases 3(b) and 4), combining the inequalities leads to a strictly smaller set.
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Thus, in our empirical setting, we use both types of inequalities together. Second, if σ1 ą 0

or σ3 ą 0, the confidence sets defined using only the odds-based inequalities include points

outside of the grid, as indicated by the asterisks in Table 2. Conversely, the confidence

sets defined using only the bounding moment inequalities are always contained within the

boundaries of the grid. As we discuss in Appendix Sections C.1 and C.3, we find this outcome

because, if σ1 ą 0 or σ3 ą 0, the odds-based moments are globally convex in the parameter

θα and tend to 8 as θα goes to 8 or ´8. Conversely, the bounding moments are always

globally concave in θα and tend to ´8 as θα goes to 8 or ´8.17

Finally, in case 5, we consider a setting in which the researcher wrongly assumes that the

agent has more information than she possesses. Specifically, we consider the case in which the

researcher assumes that the agent has perfect information on all payoff-relevant variables and,

consequently, builds the moment inequalities using the following two instrument functions

g1ppiq “ 1t∆pijj1 ě 0u and g2ppiq “ 1t∆pijj1 ă 0u, (27)

instead of those in equation (26). We compute the maximum likelihood estimates as

argmax
pθα,θκ2 ,θκ3 q

#

N
ÿ

i“1

3
ÿ

j“1

1tdij “ 1u ln

˜

exppθκj ` θαpijq
ř3
j1“1 exppθκj1 ` θαpij1q

¸+

, with θκ1 “ 0.

As shown in Table 2, the confidence sets defined by the odds-based moment inequalities alone,

or by both types of inequalities jointly, are empty.18 Given theorems 1 and 2, we can therefore

reject that agents have perfect information on prices. The MLE of α is asymptotically biased

downwards and, given that we set the mean price for product 1 to be the lowest in our

simulation, the downward bias in the price coefficient translates into a downward bias in the

choice-specific fixed effects of all other options in the choice set.

Table 2 presents projections of the 95% confidence set for pκ2, κ3, αq on each of three

dimensions separately. In Appendix C.2, we show in figures projections of the confidence set

on the two-dimensional space pκ2, αq and on the two-dimensional space pκ3, αq. In Appendix

C.3, we present simulation results for additional values of σ1 and σ3, and plot the odds-based

and bounding moments as a function of θα while holding θκ2 and θκ3 at their true values.

17As a consequence, given real numbers a1, a2, a3 and a4, the confidence set defined by the odds-based
inequalities may be of the form p8, a1s Y ra2,8q (as in case 2) or of the form p8, a1s Y ra2, a3s Y ra4,8q (as
in cases 3(a) and 3(b)). Conversely, the confidence set defined by the bounding inequalities is always of the
form ra1, a2s. Thus, with a sufficiently large grid, this confidence set will always be included in the grid.

18As we show in Table C.3 in Appendix C.3.3, the confidence set defined by the bounding moment
inequalities is also empty when it is computed following the procedure in Andrews and Soares (2010). In
unreported results, we find it is also empty when computed following the procedure in Cox and Shi (2023)
but using four instrument functions instead of the two instrument functions in equation (26).
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6 Estimation Results

We now use the model in Section 3 to study a physician’s choice of diabetes treatment. In

Section 6.1, we present maximum likelihood estimates of the model parameters; computing

these estimates requires assumptions on the exact content of the physician’s information

set. In Section 6.2, we relax these informational assumptions and present estimates that use

the moment inequalities described in Section 4. All results we present in this section and

subsequent sections cover the class of DPP-4 inhibitors. We also restrict attention to the

prescription decisions of primary care physicians and endocrinologists.

6.1 Maximum Likelihood Estimates

We start by computing maximum likelihood estimates of physicians’ preference parameters.

Following Manski (1991), this estimation approach requires the researcher to first compute

measures of the physician’s price expectations for every medical visit and drug in the choice

set. We compute these measures by regressing the realized out-of-pocket costs on an infor-

mation set we specify. In the second step, we compute maximum likelihood estimates of the

model parameters using a multinomial logit specification. Our specification conditions on

drug-specific fixed effects and the expected out-of-pocket costs computed in the first step.

Formally, building on the model-implied choice probability in equation (7), we compute

argmax
pθα,θκ2 ,θκ3 q

#

N
ÿ

i“1

3
ÿ

j“1

1tdij “ 1u ln

˜

exppθκj ` θα
pErpij|zisq

řJ
j1“1 exppθκj1 ` θαpErpij1 |zisq

¸+

, with θκ1 “ 0. (28)

Here, zi is a vector of observed variables assumed to coincide with physician i’s information

set, Wi, and pErpij|zis is the predicted out-of-pocket costs for visit i and drug j from the first

stage linear regression of pij on zi. The log-likelihood function in equation (28) has only

two fixed effects to estimate because the class of DPP-4 inhibitors includes only three drugs

during our sample period. We compute parameter estimates as in equation (28) for different

assumptions on the physician’s information sets; i.e., for different vectors tziu
N
i“1. We report

the estimates in Table 3.

Under the assumption of perfect information, we find an estimate of the price coefficient,

α, equal to ´0.43. When we instead assume providers form expectations using contempora-

neous average out-of-pocket costs at the drug-carrier level or drug-plan type level, we find a

coefficient equal to ´1.21 and ´1.45, respectively. If we assume providers form expectations

on each patient’s out-of-pocket costs using only contemporaneous drug-year price averages,

the estimate of the price coefficient equals ´2.09. Finally, if we assume that physicians’

22



Table 3: Estimation Results - MLE

Information Set α κ2 κ3
Price Elast.
(Janumet)

Perfect Information
´0.43 1.40 ´0.26 ´0.53
(0.03) (0.03) (0.04) (0.04)

Average Current Prices By ´1.02 1.44 ´0.30 ´1.24
Drug-Plan Type-Carrier-Year (0.04) (0.03) (0.04) (0.06)

Average Current Prices By ´1.21 1.44 ´0.31 ´1.47
Drug-Carrier-Year (0.05) (0.03) (0.04) (0.06)

Average Current Prices By ´1.45 1.46 ´0.17 ´1.77
Drug-Plan Type-Year (0.11) (0.03) (0.04) (0.13)

Average Current Prices By ´2.09 1.51 ´0.10 ´2.52
Drug-Year (0.14) (0.03) (0.04) (0.17)

Lagged Prices
´0.67 1.40 ´0.23 ´0.82
(0.04) (0.03) (0.04) (0.05)

Average Lagged Prices By ´1.04 1.44 ´0.21 ´1.26
Drug-Plan Type-Carrier-Year (0.05) (0.03) (0.04) (0.06)

Average Lagged Prices By ´1.27 1.46 ´0.20 ´1.54
Drug-Carrier-Year (0.05) (0.03) (0.04) (0.07)

Average Lagged Prices By ´1.69 1.47 ´0.02 ´2.03
Drug-Plan Type-Year (0.12) (0.03) (0.04) (0.15)

Average Lagged Prices By ´3.09 1.50 0.06 ´3.77
Drug-Year (0.22) (0.03) (0.04) (0.27)

Note: Columns labeled α, κ2 and κ3 present maximum likelihood estimates of the corresponding parameter
computed following equation (28). The column labeled Information Set indicates the vector of observed
covariates zi used to build the log-likelihood function in equation (28). To illustrate the elasticity implied by
the price coefficients, we report in the column labeled Price Elast. (Janumet) the in-sample average elasticity
for Janumet, which corresponds to drug j “ 1 in our choice set.

information sets equal these same averages but lagged by a year, the point estimates move

further away from zero, reaching a minimum value of ´3.09. In our setting, the estimates

of the choice-specific fixed effects κ2 and κ3 are generally more robust to the specification of

the physician’s information set.19

In sum, we find the maximum likelihood estimate of the price coefficient decreases (in

absolute value) when we assume physicians form price expectations using more detailed

information. This pattern is consistent with results in Dickstein and Morales (2018). In

that setting, when the researcher specifies too large an information set, including variables

the agent did not use when forming her expectations, the parameter on the mis-measured

expectation is asymptotically biased toward zero. Our simulation results in Table 2 and in

Appendix C.3 show similar bias patterns.

As the last column in Table 3 shows, the distinct estimates of κ2, κ3 and, especially,

19Here, the distinct estimates of α do not translate into distinct estimates of κ2 and κ3 because the three
drugs in the choice set have roughly similar average out-of-pocket costs, as we report in Table 1.
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α, imply different average elasticities of treatment choices with respect to expected out-

of-pocket costs. Consistent with the heterogeneity in the estimates of α, we find larger

elasticity estimates when the researcher assumes the physician forms expectations using

coarser information. For example, in the case of the Janumet, the in-sample average elasticity

of Janumet’s share with respect to its expected price grows in absolute value from ´0.53,

when we assume physicians have perfect information on prices, to ´3.77, when we assume

physicians form their price predictions using only last year’s average price by drug. The

average own-(expected) price elasticities for other drugs in the choice set exhibit similar

heterogeneity across models, depending on how we specify the physician’s information set.

Moreover, different assumptions on physician information sets also imply substantially

different predictions under counterfactual market environments. To illustrate these differ-

ences, we consider an intervention in which three carriers negotiate a better acquisition price

for Janumet. These three carriers represent 55% of all sample visits. We impose that, as a

result of the negotiation, Janumet’s out-of-pocket cost falls 50% for all patients enrolled in a

plan offered by these carriers. In column 1 of Table 4, we show the counterfactual share that

Janumet captures after this price reduction. Depending on the assumed information set,

this counterfactual share varies between roughly 21% and 41%. Importantly, regardless of

the assumed information set, all estimated models match the initial market share of 17.8%.

Thus, the predicted change in Janumet’s prescription share ranges from slightly over 3 per-

centage points under the model that assumes workers have perfect information on prices,

to more than 23 percent points under the model that assumes physicians form expectations

using only last year’s drug-specific average prices.

There are two reasons why models that differ in the assumed information set will gen-

erate different predicted counterfactual shares. First, when we estimate our model with

different informational assumptions, we find distinct estimates of the physician’s preference

parameters, as shown in Table 3. Second, different informational assumptions yield distinct

changes in Janumet’s expected price, because our counterfactual price changes filter through

the physician’s information set into her expectations. For example, if we assume physicians

use carrier-specific average drug prices in their expectations, their expected price differs in

the counterfactual across patients with different carriers. Columns 2 and 3 in Table 4 il-

lustrate how these two factors influence the counterfactual predictions. From column 3 in

particular, we see that the differing predictions by model follow mostly from differences in

the estimated preference parameters.

That the parameter estimates, implied elasticities, and counterfactual predictions differ

across models illustrates the importance of correctly specifying agents’ information sets.

One potential way to identify the physician’s true information set is to use model selection
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Table 4: Effect of a Reduction in Out-of-Pocket Costs on Janumet’s Market Share

(1) (2) (3)

Information Set
Counterfactual Counterfactual Share Counterfactual Share

Share (Perfect Info. Est.) (Perfect Info. Prices)

Perfect Information 21.24 21.24 21.24

Average Current Prices By
26.97 21.21 27.43Drug-Plan Type-Carrier-Year

Average Current Prices By
28.87 21.22 29.73Drug-Carrier-Year

Average Current Prices By
30.47 20.95 31.29Drug-Plan Type-Year

Average Current Prices By
34.90 20.95 37.68Drug-Year

Lagged Prices 23.61 20.54 22.58

Average Lagged Prices By
26.87 20.96 26.88Drug-Plan Type-Carrier-Year

Average Lagged Prices By
28.88 20.86 28.88Drug-Carrier-Year

Average Lagged Prices By
31.87 20.56 31.62Drug-Plan Type-Year

Average Lagged Prices By
41.38 20.48 45.94Drug-Year

Note: All models reproduce the initial observed market share of Janumet, equal to 17.83%. We compute the counterfactual
market share in column 1 using both the maximum likelihood estimates pθ̂α, θ̂κ1 , θ̂κ2 q and the predicted prices that
correspond to the information set indicated in the row label. The counterfactual shares reported in column 2 use the
predicted prices that correspond to the information set indicated in the row label, but combine them with the maximum
likelihood estimates computed under the assumption of perfect information (i.e., those reported in the first row of Table 3).
The counterfactual shares reported in column 3 use the maximum likelihood estimates computed under the information
set indicated in the row label, but use predicted prices that correspond to the assumption that physicians have perfect
information on prices.

tests. We implement the testing procedure in Vuong (1989) to compare the models whose

estimates we report in Table 3. As we show in Appendix D.1, this procedure selects the

model that assumes physicians form price expectations using the contemporaneous average

price at the drug-carrier-year level. We note, however, that this testing approach can only

compare the options we specify; if we fail to include the model that uses the true information

set among our test options, the conclusion from such a test may be misleading. We provide

an alternative approach to testing information sets in Section 6.2 below.

6.2 Moment Inequality Estimates

We now use the moment inequalities described in Section 4.3 to estimate the parameters of

the drug choice model in Section 3. We consider the same collection of potential information
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sets that we used with the maximum likelihood approach, as listed in Table 3. Importantly,

while the maximum likelihood estimator is consistent only if the researcher’s assumed infor-

mation set coincides with the entire vector of information that the physician uses to form

expectations, our moment inequality approach does not require the researcher to specify

the entire vector. When using a vector of price predictors within our inequalities, those

predictors need only compose a subset of the information the physician uses in her forecast.

For each information set we consider, we compute 95% confidence sets implementing the

inference procedure in Cox and Shi (2023).

We structure our discussion of the moment inequality estimates to provide two broad in-

sights into diabetes care. First, we show that physicians use relatively aggregate information

on out-of-pocket costs when forming expectations about a given patient’s price. Second, we

show that physicians exhibit greater elasticity with respect to expected out-of-pocket costs

than one might conclude based on estimates from full-information models.

To support the notion that physicians use relatively coarse information to form expec-

tations, we combine our inequalities with the same ten sets of potential instruments listed

in Table 3. The resulting 95% confidence sets are empty for seven of them. We report in

Table 5 the projected confidence sets for the three instruments for which these confidence

sets are not empty. Because we test multiple hypotheses, we compute family-wise adjusted

p-values following Holm (1979), as described in Appendix B.5.2. In our setting, the p-values

for the tests that yield empty 95% confidence sets remain below 5% even after adjusting

for family-wise testing. Thus, for all seven variables listed in Table 3 for which the corre-

sponding confidence set is empty, we reject the null hypothesis that the physician uses the

corresponding variables to forecast out-of-pocket costs.20

In practical terms, in this testing we reject the assumption that all physicians have

perfect information on either contemporaneous prices or last year’s prices. We also reject

that providers, as a whole, know the most detailed averages of out-of-pocket costs. For

example, we reject that physicians know the contemporaneous or lagged average copayment

by drug, plan type, and carrier when they forecast patient prices. Finally, we also reject

that physicians know contemporaneous or lagged average copayments by drug, carrier, and

year. This last finding contrasts with the results of the Vuong (1989) tests described in

20For each information set we test, we use the same number of instruments and the same instrument
functions, as detailed in Appendix B.4. Differences in the value of an instrument functions gkpziq across
specifications thus reflect differences in the value of the instrument zi for each observation i. E.g., when
testing whether physicians know carrier-specific prices at the drug and year level, patients with carrier A vs.
B will have different values of the instrument. When testing whether they know only drug- and year-specific
average prices, patients have the same value of the instrument regardless of their carrier. In this way, the
fact that we reject the more specific price averages here is a reflection of the value of the instrument and not
the number of instruments or the choice over instrument functions.
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Table 5: Estimation Results - Moment Inequalities

Information Set α κ2 κ3
Price Elast.
(Janumet)

Average Current Prices By
[´4.30,´1.20] [1.40, 1.70] [´0.65, 0.10] [´5.10,´1.40]Drug-Year

Average Lagged Prices By
[´3.55,´1.40] [1.40, 1.65] [´0.65,´0.15] [´3.92,´1.53]Drug-Plan Type-Year

Average Lagged Prices By
[´4.10,´1.10] [1.40, 1.75] [´0.50, 0.25] [´4.60,´1.20]Drug-Year

Note: Columns labeled α, κ2 and κ3 present projected 95% confidence sets computed using the moment inequalities described
in Section 4.3 and the inference procedure in Cox and Shi (2023). The column labeled Information Set indicates the vector
of observed covariates zi that we use as instruments in our moment inequalities. The column labeled Price Elast. (Janumet)
reports the 95% confidence interval for the in-sample average elasticity of Janumet’s prescription share with respect to its
expected price. Janumet is one of the three DPP-4 inhibitors in our sample.

Section 6.1, which singled out average out-of-pocket costs at the drug-carrier-year level as

the preferred information set among the alternatives we tested.

The confidence sets described in Table 5 are similar across the instruments that lead

to non-empty confidence sets. For example, when we assume physicians form expectations

using an information set that includes last year’s average price at the drug-plan type-year

level, we obtain a confidence set for the price coefficient, α, between ´3.55 and ´1.40. When

we estimate our model assuming physicians use last year’s average price at the drug-year

level to form expectations, the confidence set for the parameter α includes values from ´4.10

to ´1.10.

Our confidence intervals of α provide the second key insight on diabetes care: physi-

cians may be more sensitive to expected out-of-pocket costs than the estimates from full

information models suggest. Specifically, for the three information vectors that we fail to

reject using our moment inequality approach, we can compare the 95% confidence set for

α, reported in Table 5, to the corresponding point estimate in Table 3. When we impose

the assumption that an information set forms only a subset of the physician’s information

rather than the complete set, we find elasticities of market shares with respect to expected

prices that can be much higher than the level the corresponding maximum likelihood esti-

mates imply. As an example, the maximum likelihood estimator of α equals ´1.69 when we

assume the physician forms price expectations using only last year’s average prices at the

drug-plan type-year level. If we instead assume this same information forms only a subset

of the physician’s information, the 95% confidence interval ranges from ´3.55 to ´1.40.

In terms of elasticities, the maximum likelihood estimates imply an elasticity of Janumet’s

market share with respect to its expected price equal to ´2.03, while the moment inequality

confidence set implies an analogous elasticity between ´3.92 and ´1.53.
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7 Policy Discussion: Informational Intervention

The estimates described in Section 6.2 suggest physicians face substantial information fric-

tions when forecasting patient prices. In this section, we use our model to predict outcomes

were policymakers or insurers to provide physicians with perfect information on out-of-pocket

costs for each patient they treat. In this counterfactual setting, physicians learn the patient’s

specific prices for each drug at the point of prescribing, possibly through pop-up messages in

their electronic medical record (Desai et al., 2022). As a result of this information interven-

tion, we measure the model-implied change in each drug’s market share; the total fraction

of treatments chosen that are the cheapest available for a patient; the average per patient

realized out-of-pocket costs; and, consumer surplus measured in dollars per patient.

We measure the impact of the informational intervention under each of the three infor-

mational vectors that we failed to reject using the testing procedure in Section 6.2; see Table

5. A limitation of our counterfactual analysis relates to the assumptions we now impose on

these three information vectors. In estimation, we required only that physicians know at least

the variables in the specified vector; e.g., last year’s average prices by drug. Here, we instead

assume that physicians’ information set prior to the informational intervention includes only

this information variable that we failed to reject. That is, for each of the three information

sets we consider, we form pre-intervention price expectations by regressing realized prices

on a constant and the covariates that we assume form the physician’s information set.21

We then combine these price expectations with the set of parameter values in the relevant

confidence set we found with our moment inequality model. For example, we compute the

lower limit of the confidence interval for drug j’s initial prescription share as

min
θ̂PΘ̂

#

N
ÿ

i“1

exppθ̂κj ` θ̂α
pErpij|zisq

řJ
j1“1 exppθ̂κj1 ` θ̂αpErpij1 |zisq

+

, with θ̂κ1 “ 0, (29)

where θ̂ “ pθ̂α, θ̂κ2 , θ̂κ3q, Θ̂ is the 95% confidence set for θ˚ “ pα, κ2, κ3q and, pErpij|zis is the

predicted price for visit i and drug j computed via a regression of pi on zi. We compute the

upper limit in a similar fashion, replacing the minimization over θ̂ P Θ̂ with a maximization.

For each drug and baseline information set we consider, Table 6 reports the initial pre-

scription shares as well as the change in these shares that results from the information

intervention. The initial prescription shares observed in the data equal 17.8%, 68.7% and

13.5% for Janumet, Januvia, and Tradjenta, respectively. Although the confidence intervals

for these shares reported in Table 6 are relatively narrow, they all generally include the ob-

21We do not face this limitation when computing the counterfactual shares: because physicians have
perfect information on prices in this counterfactual setting, their expected prices are uniquely determined.
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Table 6: Effects of an Informational Intervention - Product Market Shares

Information Set Drug
Initial Change in
Share Share

Average Current Prices By Drug-Year
Janumet [16.1, 20.3] [0.9, 5.1]
Januvia [65.8, 72.6] [´10.0,´3.7]

Tradjenta [9.0, 15.6] [2.8, 5.5]

Average Lagged Prices By Drug-Plan Type-Year
Janumet [16.8, 19.9] [1.0, 3.9]
Januvia [70.3, 74.8] [´11.9,´5.4]

Tradjenta [7.1, 11.1] [4.3, 8.0]

Average Lagged Prices By Drug-Year
Janumet [15.2, 18.9] [1.1, 5.9]
Januvia [68.6, 73.9] [´13.8,´4.1]

Tradjenta [8.8, 13.3] [3.0, 7.9]

Note: The column Initial Share contains 95% confidence intervals for each drug’s model-predicted share in the sample under
the information set specified in the row. The column Change in Share contains a 95% confidence interval for the percentage
point change in each drug’s model-predicted share when changing physicians’ information set from the one specified in
the row to perfect information. Janumet, Januvia, and Tradjenta are the three DPP-4 Inhibitor products available in our
sample period.

served shares. The final column in Table 6 shows the change in prescription shares for each

product as we provide physicians full information on patient prices. Across all specifications,

we see the shares of Janumet and Tradjenta increase, while the share of Januvia decreases.

We see this change in share precisely because physicians can now form better expectations

of patient prices. When physicians only have access to aggregate price information, as in

our baseline, these rational physicians nonetheless form expectations that are correct on

average. However, given that there exists important variation in patient prices around that

average, better information allows physicians to update their expectations to reflect the

entire distribution of patient prices. Thus, the shifts in shares for Janumet, Januvia, and

Tradjenta reported in the final column in Table 6 partly reflect the relative frequency with

which patients’ actual prices are below the expected price that generates the baseline shares.

From a policy perspective, the changes in shares reported in Table 6 do not translate

immediately into useful measures of patient outcomes. In Table 7, we instead compute more

direct measures of the effectiveness of the intervention from the perspective of patients.

First, we show that the share of patients receiving the cheapest drug in their choice set

increases significantly following the intervention. Across different specifications, we find the

share of patients receiving the cheapest drug jumps roughly 11 to 30 percentage points when

we provide price information to providers, relative to a baseline of 35%. This shift suggests

that the informational frictions that physicians face at baseline are substantial, and that

their price elasticity is sufficiently large to generate changes in prescribing behavior as more

information becomes available.

Second, we show in Table 7 that, as physicians shift to prescribing cheaper drugs in
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Table 7: Effects of an Informational Intervention - Out-of-Pocket Costs and Surplus

Change in. . .

Information Set
Share Mean Mean

Cheapest OOP Costs Consumer Surplus

Average Current Prices By Drug-Year [11.6, 31.0] [´10.1,´5.5] [0.093, 0.237]

Average Lagged Prices By Drug-Plan Type-Year [13.1, 26.0] [´9.7,´6.3] [0.090, 0.191]

Average Lagged Prices By Drug-Year [11.0, 30.6] [´10.5,´5.4] [0.079, 0.231]

Note: In this table, we report, for three different outcome variables, the effect of changing physicians’ information from the
set indicated in each row to perfect information. The change in the Share Cheapest column reports a confidence interval
for the percentage point change in the share of all sample visits in which the physician prescribes the cheapest drug. We
compute the Mean OOP Costs as a sum across individuals and drugs of the model-implied prescription share multiplied by
the corresponding true price, measured in dollars per month. The change in Mean Consumer Surplus corresponds to the
change in the expected utility of office visits, averaged across all sample visits and re-normalized to be expressed in dollars
per patient per month.

the patient’s choice set, the patient’s average out-of-pocket spending falls. We predict the

average patient’s monthly spending to fall between $5.5 and $10.5 from an initial average

spending of $46 per month, or between 12 and 23%. This prediction is similar to experimental

evidence from Desai et al. (2022), who found an 11.2% reduction in out-of-pocket costs after

an intervention in which physicians in the treatment group received real-time patient cost

information during office visits.

Finally, the last column in Table 7 reports the change in consumer surplus under the

intervention, expressed in dollars per patient per month. We predict a change in surplus

of between $0.09 and $0.25 per patient per month. Comparing this change in surplus with

the change in average out-of-pocket costs, we see that looking only at changes in cost over-

estimates the actual welfare gains. Here, the overestimates stem from differential product

quality. As we show in Table 6, the information intervention shifts overall demand from

Januvia toward Janumet and Tradjenta. However, as we report in Table 5, Januvia, which

corresponds to the index j “ 2 in our model, has the highest effective quality, as proxied

by the choice-specific effects tκju
3
j“1. Relative to a normalized quality for Janumet, κ1 “ 0,

the 95% projected confidence set for Januvia’s quality, κ2, lies roughly between 1.4 and 1.7.

Tradjenta’s effect, κ3, includes mostly negative values. Thus, by providing precise infor-

mation on prices, physicians may change their prescribing behavior towards lower-quality

drugs, which limits the gains in consumer surplus.

8 Testing for Heterogeneity in Information

We compute the moment inequality estimates in Section 6.2 under the assumption that a

particular variable belongs to every physician’s information set. The results in Table 5 are

30



thus compatible with the claim that every physician knows average contemporaneous and

lagged prices by drug and year, and average lagged prices by drug, plan type, and year. In

this section, we examine whether specific subsets of physicians have access to more precise

information about prices. We also consider whether heterogeneity in information suggests a

benefit from targeting an informational intervention.

We test for heterogeneous information sets as a function of four observable provider

characteristics: medical specialty, graduation year, gender, and recent prescribing experience

with drugs in our specific diabetes class. For each subgroup of physicians defined according

to these observables, we test whether the physicians in the corresponding group know last

year’s average price at the drug-carrier-plan type-year level. In Section 6.2, we found that the

95% confidence set for the model parameters is empty when we assume that every physician

knows and uses this information in forming expectations. Thus, our goal in this analysis is

to look for evidence that some categories of physicians know this more specific price average,

even when not all of them do. Throughout, we correct our p-values using the family-wise

adjustment of Holm (1979) to handle multiple hypothesis testing.

When splitting physicians by gender, and when splitting them into groups of equal size

based on their graduation year and prescribing experience, we find that, for all these groups,

we reject the null that physicians in the group know last year’s average price at the drug-

carrier-plan type-year level. However, when splitting physicians by specialty, we fail to

reject that endocrinologists know the more specific price averages. Conversely, primary care

physicians appear to use only more aggregate price information in their treatment choice.

Given the evidence that endocrinologists form price expectations using more detailed

information, we re-evaluate the effect of our informational intervention. In our re-assessment,

we assume endocrinologists form expectations in the initial scenario, before the intervention,

using the more precise information. We report the results in Table 8.

In panel A, we show that endocrinologists’ drug choices are less sensitive to expected

prices than the estimates we found when pooling all physicians together. Here, the 95% pro-

jected confidence set for an endocrinologist’s coefficient on expected price, α, is r´1.15,´0.50s;

the analogous confidence sets for all physicians, reported in Table 5, included more negative

values of α, implying greater elasticity to expected prices.

In panel B, we evaluate the effect of providing perfect information on patient-specific

prices to endocrinologists. We implement this evaluation in two settings. First, we assign

endocrinologists a baseline information set that includes only lagged average drug prices by

drug, plan type, and year. In this setting, we also use the parameter estimates we obtain

when pooling all physicians together—i.e., the estimates in the second row of Table 5. We use

this scenario to illustrate how the counterfactual predictions under our original assumptions
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Table 8: Estimation Results & Informational Intervention - Endocrinologists

Panel A: Confidence Sets for Preference Parameters

Information Set α κ2 κ3

Average Lagged Prices By
[´1.15,´0.50] [1.25, 1.60] [´0.45,´0.05]

Drug-Carrier-Plan Type-Year

Panel B: Outcomes of an Informational Intervention

Change in. . .

Information Set
Share Mean Mean

Cheapest OOP Costs Consumer Surplus

Average Lagged Prices By
[12.8, 26.9] [´9.6,´6.1] [0.073, 0.168]

Drug-Plan Type-Year
Average Lagged Prices By

[4.3, 10.1] [´4.7,´2.3] [0.014, 0.056]
Drug-Carrier-Plan Type-Year

Note: In panel A, columns labeled α, κ2 and κ3 present projected 95% confidence sets computed using the moment
inequalities described in Section 4.3 and the inference procedure in Cox and Shi (2023). The column labeled Information
Set indicates the vector of observed covariates zi that we use as an instrument in our moment inequalities. In panel
B, the change in the Share Cheapest indicates a confidence interval for the percentage point change in the share of
visits during which the physician prescribes the cheapest drug in the choice set. We compute Mean OOP Costs as a
sum across individuals and drugs of the model-implied prescription share multiplied by the corresponding price; it is
measured in dollars per month. The change in Mean Consumer Surplus corresponds to the change in the expected
utility of office visits, averaged across all sample visits and re-normalized to be expressed in dollars per patient per
month.

apply for the subset of endocrinology visits. In this case, as we show in the first row of panel

B, the effect of the intervention for the subset of endocrinologists is similar to the predictions

discussed in Section 7 for the average physician.

We next predict the same outcomes in a second setting in which we assume endocrinol-

ogists have more precise price information at baseline. We also employ the endocrinology-

specific parameter estimates in our predictions, which show relatively lower price sensitivity.

As we report in the second row of panel B, endocrinologists now respond to the interven-

tion with a smaller change in behavior. In this scenario, the share of office visits in which

the physician chooses the cheapest drug increases by only 4 to 10 percentage points. As a

consequence, the average patient’s monthly out-of-pocket costs decrease between $2.3 and

$4.7, and the average consumer surplus increases minimally, from 1 to 6 cents per patient

per month.

This example illustrates that heterogeneity in both preference parameters and initial

information sets can play an important role in determining the effect of an informational

intervention. Here, patients of endocrinologists gained little in terms of out-of-pocket cost

savings and consumer surplus relative to patients visiting the wider pool of providers. Our
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findings suggest a value from estimating potentially heterogeneous information sets and pref-

erences by subgroups: with these parameters, policymakers can better target interventions

toward those visits where physicians are likely to alter their drug choice. This targeting

seems particularly useful for interventions like providing price information at the point of

prescribing, which may require non-trivial costs to implement.

We emphasize again that our preference measurement could encompass both patient and

physician preferences. For example, our finding that endocrinologists are less sensitive to

price might reflect their expertise, but might also reflect that their patient population suffers

from more severe illness; these patients, and therefore their physicians, might care more about

drug effectiveness relative to price. From a policy perspective, however, this distinction

does not change the implications of our measurement. Informational interventions that

focus on drug prices will nonetheless generate a smaller behavior change when they target

endocrinologists, whether that change is driven by physician or by patient preferences.

9 Conclusion

We develop a new moment inequality estimation procedure that allows researchers to es-

timate preference parameters in discrete choice settings in which the decision-maker must

form expectations about a product characteristics—here, price. Our procedure applies in

settings with arbitrarily large choice sets. Importantly, our tool requires the researcher to

specify only a subset of the information that agents use to form their expectations. This

approach contrasts with traditional maximum likelihood approaches, where the researcher

must specify the exact information set the agent uses to forecast product characteristics.

We apply our estimation procedure to study the choice of diabetes treatment. Pairing our

model with medical claims data, we conclude that physicians do not have perfect information

on the out-of-pocket costs that their patients face for each of the drugs in the choice set.

Instead, we find that most physicians use relatively broad averages of out-of-pocket costs—for

example, last year’s average price at the drug-plan type level—when forming expectations

about a patient’s true out-of-pocket costs. In addition, our moment inequality estimates

suggest physicians may be more sensitive to patient costs than prior full-information models

would suggest.

Applying our estimates in a context in which competing insurers map drugs to mul-

tiple tiers with distinct out-of-pocket costs, we find an information intervention can steer

prescribing patterns towards more cost-effective treatment options. In a counterfactual ex-

periment in which we give all physicians in our sample perfect information on patient- and

drug-specific out-of-pocket costs, we find average costs fall 12 to 23% for diabetes patients.
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However, the effect of this intervention is smaller when such detailed price information is

provided to endocrinologists. The relatively smaller predicted response reflects the finding

that these specialists possess more precise information on prices initially, and that they are

less sensitive to prices in their prescribing behavior.

Electronic “pop-ups” in the provider’s medical chart, as trialed in a single healthcare

system in Desai et al. (2022), could thus help steer prescribing towards cheaper drugs,

particularly for those physicians least likely to know the patient’s true out-of-pocket costs.

However, given the pecuniary and non-pecuniary costs of these interventions—in terms of

health system dollars and provider time and hassle costs—our evidence suggests a value of

targeted academic detailing (Soumerai and Avorn, 1990). Here, sharing price information

with less specialized physicians can have an important effect on the costs patients realize,

and on overall healthcare spending.
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A Setting and Data: Additional Details

A.1 Sample Construction

The APAC data contain separate information on medical claims and drug claims. Here, we describe
the steps we follow to build our sample from this information. Table A.1 provides the number of
observations included in the data at each sample restriction stage.

First, for each medical claim, which can include multiple “lines” with different dates and
provider identifiers, we choose the earliest date and the mostly commonly listed provider.

Second, we select the subset of medical claims that list: (a) both claim and provider identifiers;
and, (b) a type 2 diabetes diagnosis, which we select using the set of ICD-10 diagnostic codes that
include the worlds “type 2 diabetes mellitus” in their description. A list of these diagnostic codes
is available upon request.

Third, we link providers’ information to the medical claims data. To do so, we use a provider’s
NPI number to validate the provider information in the APAC data using the National Plan and
Provider Enumeration System (NPPES) registry. From the NPPES registry, we collect information
on providers’ specialty, and use this information to restrict the sample to claims for which the
associated provider is in a specialty that typically treats diabetes patients; i.e., family medicine,
internal medicine, endocrinology, pediatrics, obstetrics and gynecology, clinical nurse specialists,
and physician assistants.

Fourth, for each provider, we compute the maximum yearly count of: (a) all medical claims, and
(b) all type 2 diabetes-related claims. We then exclude outlier claims, corresponding to providers
with maximum yearly counts of all medical claims in the highest or lowest 5% of the corresponding
distribution. We similarly exclude observations linked to providers with maximum yearly counts
of type 2 diabetes claims in the lowest decile of the corresponding distribution. This procedure
excludes providers with a maximum yearly count of type 2 diabetes claims of zero or one.

Fifth, we merge the drug claims data with those medical claims that we include in the sample
after the first four cleaning steps. The matching process first creates, for each patient identifier, all

Table A.1: Sample Restrictions - Number of Observations

Medical claims
All medical claims (with non-mising claim ID) 89,921,304
Include only Oregon-based providers 82,558,080
Exclude missing NPIs 80,108,168
Apply specialty restrictions 34,238,516
Include only type 2 diabetes diagnosis 1,123,169
Exclude providers with max. yearly number of claims in the top or bottom 5% 802,801
Exclude providers with max, yearly number of diabetes claims in the bottom 10% 779,262

Matched claims
All matched claims 600,044
Missing copay or rxdays 599,792
Restrict plan types/ markets 595,869
Restrict carriers 588,127
Exclude refills 586,862
Restrict to specific drug classes 184,783
Note: each line reports the number of observations that we preserve at each sample restriction stage.
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combinations of a drug claim and a medical claim. We then match each drug claim to the medical
claim whose date has the smallest distance to the drug fill date, and exclude matches whose distance
is outside of the -7 to 180 day range.

Sixth, we exclude claims with missing information on plan type or carrier, or corresponding to
plan types and carriers with a small number of observations. We further restrict our sample to
claims corresponding to the following plan types: HMO, POS, PPO, SIF (Self-insured POS), SIP
(Self-insured PPO), and EPO.

Seventh, we also remove cases in which the drug claim reflects a refill.

A.2 Constructing Copayment Measures

While the claims data report out-of-pocket costs only for the prescription filled by the patient, our
analysis requires out-of-pocket costs for all drugs in the patient’s choice set. To solve this missing
data problem, we construct for each drug in the patient’s choice set measures of the out-of-pocket
costs that the patient would face in any given year. We base this prediction on information on
drug and year identifiers as well as the patient’s plan type, carrier, and Metropolitan Statistical
Area (MSA) of residence. We restrict the sample to prescriptions for 30-day supplies.

Our baseline prediction model is a random forest model. We conduct several analyses to
understand the results, and evaluate the performance of the price prediction model. First, we
construct variable importance scores by computing the improvement made in the residual sum of
squares averaged over all trees for each predictor. We normalize the scores by dividing them by the
maximum score such that the score for the top predictor is 1. Figure A.1 plots importance scores
for predictors with a score above 0.01. We find that drug identities are the most important factors
followed by certain plan types and carriers.

Figure A.1: Variable Importance Score

0 .2 .4 .6 .8 1
Importance

Drug = Janumet
Plan type = SIF

Carrier = 3
Drug = Apidra

Drug = Levemir
Drug = Trulicity

Drug = Humalog
Carrier = 6

Drug = Novolog
Drug = Jardiance
Drug = Tradjenta

Carrier = 12
Plan type = HMO

Drug = Byetta
Drug = Lantus
Drug = Januvia
Drug = Farxiga

Drug = Invokana
Drug = Glyburide
Plan type = PPO
Drug = Victoza

Drug = Glimepiride
Drug = Glipizide

Notes: For any x, “Drug “ x” denotes a dummy variable that equals one for drug
x (and zero otherwise), “Plan type “ x” denotes a dummy variable that equals
one for plan type x (and zero otherwise), and “Carrier “ x” denotes a dummy
variable that equals one for carrier x (and zero otherwise).

In Table A.2, we show different measures of the performance of our prediction procedure.
First, we split our sample into: (a) a randomly selected training sample that contains 75% of the
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observations, which we use to estimate our random forest model; and, (b) a test sample that contains
the remaining 25% of the observations, which we use to compute the out-of-sample predictions of
our model. We compute the R-squared from regressing observed prices on predicted prices. As
shown in the first three rows of Table A.2, the R-squared is 0.43 for out-of-sample predictions and
0.51 for in-sample predictions. We find that the out-of-bag-error is 0.45, as shown in the last row
of Table A.2.

The goodness-of-fit measures for the random forest model are similar to those of a regres-
sion model that includes drug-, plan type-, carrier-, patient MSA-, and year-specific fixed effects.
However, the comparison of both models is not perfect, as the regression model cannot gener-
ate price predictions for observations corresponding to drug-plan type-carrier-patient MSA-year
combinations for which the training sample contains no observations. More specifically, the lin-
ear regression model yields missing predicted prices for 23% of the drug-plan type-carrier-patient
MSA-year combinations.

In the third and fourth columns of Table A.2, we use the random forest method, but omit plan
type and carrier indicators, respectively, from the set of independent variables on which we base
the price predictions. We find that the R-squared decreases more, and out-of-bag error increases
more, when omitting carrier indicators than when omitting plan type indicators, suggesting that
carrier indicators are more important factors influencing drug prices than plan type indicators.

Table A.2: Copayment Predictions: Goodness-of-fit Measures of Random Forest Models

Excluded regressors: None Plan Type Carrier

Model: Rnd. Forest Linear Reg. Rnd. Forest Rnd. Forest

Full Sample 0.51 0.50 0.47 0.36
Training Sample (75%) 0.51 0.51 0.47 0.37
Test Sample (25%) 0.43 0.44 0.41 0.32
Out-of-bag Error, Full Sample 0.45 0.48 0.52
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B Moment Inequalities: Additional Details

We prove theorems 1 and 2 in sections B.1 and B.2, respectively. In Section B.3, we show how to
optimally choose the approximation point ejj1pzi, θq for every pzi, θq and drugs j and j1, and discuss
properties of the bounding inequalities when the approximation points are chosen in this way.

B.1 Odds-based Moment Inequalities: Proof of Theorem 1

To prove Theorem 1, we show that, for any choices j and j1 and zi Ď Wi, equation (8) holds for
θ “ θ˚; i.e.,

Erdij expp´p∆κjj1 ` α∆pijj1qq ´ dij1 |zis ě 0, (B.1)

for any choices j and j1 and any zi ĎWi. We organize our proof in three steps, described below.

Step 1. Equation (2) implies that, for any i and any two elements j and j1 in i’s choice set, it holds
that

pdij ` dij1qp1tErUij ´ Uij1 |Jis ě 0u ´ dijq “ 0. (B.2)

Using equation (6), we can rewrite this expression as

pdij ` dij1qp1t∆κjj1 ` αEr∆pijj1 |Wis `∆εijj1 ě 0u ´ dijq “ 0, (B.3)

where ∆εijj1 “ εij ´ εij1 and, as in Section 4, ∆κjj1 “ κj ´ κj1 and ∆pijj1 “ pij ´ pij1 . As equation
(B.3) holds for every observation i, it also holds on average across subsets of observations. Thus,

Er1t∆κjj1 ` αEr∆pijj1 |Wis `∆εijj1 ě 0u ´ dij |Wi, dij ` dij1 “ 1s “ 0,

and, given the distributional assumptions in equation (4), we can rewrite this equation as

E

„

expp∆κjj1 ` αEr∆pijj1 |Wisq

1` expp∆κjj1 ` αEr∆pijj1 |Wisq
´ dij

ˇ

ˇ

ˇ

ˇ

Wi, dij ` dij1 “ 1



“ 0.

Multiplying by 1` expp∆κjj1 ` αEr∆pijj1 |Wisq on both sides of the equality and grouping terms,
we obtain

Erp1´ dijq expp∆κjj1 ` αEr∆pijj1 |Wisq ´ dij |Wi, dij ` dij1 “ 1s “ 0.

Conditional on the event dij ` dij1 “ 1, the variable 1´ dij equals dij1 , and we can thus write

Erdij1 expp∆κjj1 ` αEr∆pijj1 |Wisq ´ dij |Wi, dij ` dij1 “ 1s “ 0.

Using the Law of Iterated Expectations (LIE), we eliminate the event dij ` dij1 “ 1 from the
conditioning set, obtaining

Erdij1 expp∆κjj1 ` αEr∆pijj1 |Wisq ´ dij |Wis “ 0,

and we divide by expp∆κjj1 ` αEr∆pijj1 |Wisq to further obtain

Erdij1 ` dijp´ expp´p∆κjj1 ` αEr∆pijj1 |Wisqqq|Wis “ 0. (B.4)

5



Step 2. Consider the expression

Erdij1 ` dijp´ expp´p∆κjj1 ` αEr∆pijj1 |Wis ` α∆νijj1qqq|Wis, (B.5)

where

∆νijj1 ” ∆pijj1 ´Er∆pijj1 |Jis. (B.6)

The assumption of rationality of expectations implies that

Er∆νijj1 |Jis “ 0. (B.7)

Using the LIE and the fact that Wi Ă Ji according to equation (3a), we can rewrite equation (B.5)
as

ErErdij1 ` dijp´ expp´p∆κjj1 ` αEr∆pijj1 |Wis ` α∆νijj1qqq|Jis|Wis.

According to equation (2), dij and dij1 are deterministic functions of Ji and, thus, we can further
rewrite (B.5) as

Erdij1 ` dijErp´ expp´p∆κjj1 ` αEr∆pijj1 |Wis ` α∆νijj1qqq|Jis|Wis.

As ∆κjj1 Ď Wi Ă Ji according to equation (3), the concavity of ´ exppxq in x and Jensen’s
inequality imply

Erdij1 ` dijErp´ expp´p∆κjj1 ` αEr∆pijj1 |Wis ` α∆νijj1qqq|Jis|Wis

ď

Erdij1 ` dijp´ expp´p∆κjj1 ` αEr∆pijj1 |Wis ` αEr∆νijj1 |Jisqqq|Wis.

Given equation (B.7), we can simplify the right-hand side of this inequality as

Erdij1 ` dijErp´ expp´p∆κjj1 ` αEr∆pijj1 |Wis ` α∆νijj1qqq|Jis|Wis

ď

Erdij1 ` dijp´ expp´p∆κjj1 ` αEr∆pijj1 |Wisqqq|Wis,

and, by the LIE, we can simplify the left-hand side of this inequality as

Erdij1 ` dijp´ expp´p∆κjj1 ` αEr∆pijj1 |Wis ` α∆νijj1qqq|Wis

ď

Erdij1 ` dijp´ expp´p∆κjj1 ` αEr∆pijj1 |Wisqqq|Wis. (B.8)

Step 3. Combining equations (B.4) and (B.8), we obtain the following inequality

Erdij1 ` dijp´ expp´p∆κjj1 ` αEr∆pijj1 |Wis ` α∆νijj1qqq|Wis ď 0,

and, given equation (B.6), we further rewrite it as

Erdij1 ` dijp´ expp´p∆κjj1 ` α∆pijj1qqq|Wis ď 0.
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Multiplying by ´1 both sides of this inequality, we obtain

Erdij expp´p∆κjj1 ` α∆pijj1qq ´ dij1 |Wis ě 0.

Finally, we take the expectation of both sides of this inequality conditional on zi. If zi Ď Wi, the
LIE implies that

Erdij expp´p∆κjj1 ` α∆pijj1qq ´ dij1 |zis ě 0,

which coincides with equation (B.1). l

B.2 Bounding Moment Inequalities: Proof of Theorem 2

To prove Theorem 2, we show that, for any choices j and j1, any zi ĎWi, and any ejj1 : ZˆΘ Ñ R,
equation (15) holds when θ “ θ˚; i.e.,

Erdij1 ´ dij expp´ejj1pzi, θ
˚qqp1` ejj1pzi, θ

˚q ´ p∆κjj1 ` α∆pijj1qq|zis ě 0, (B.9)

for any choices j and j1, any zi ĎWi, and any function ejj1 : ZˆΘ Ñ R. We organize our proof in
four steps. Step 1 is the same as step 1 of the proof described in Section B.1. We describe below
steps 2 to 4.

Step 2. Given equation (B.4) and the fact that the function ´ expp´xq is concave in x, a first-order
linear approximation to this function around any point will bound it from above. Denoting the
approximation point for observation i and parameter value θ in the inequality that compares drugs
j and j1 as ejj1pzi, θq, it thus holds that

Erdij1 ` dijp´ expp´ejj1pzi, θ
˚qq ` expp´ejj1pzi, θ

˚qqp∆κjj1 ` αEr∆pijj1 |Wis ´ ejj1pzi, θ
˚qqq|Wis

ě

Erdij1 ` dijp´ expp´p∆κjj1 ` αEr∆pijj1 |Wisqqq|Wis.

Combining this inequality with the inequality in equation (B.4), and simplifying terms, we obtain
the following inequality

Erdij1 ´ dij expp´ejj1pzi, θ
˚qqp1` ejj1pzi, θ

˚q ´ p∆κjj1 ` αEr∆pijj1 |Wisqq|Wis ě 0. (B.10)

Step 3. Let’s compare the term in the left-hand side of equation (B.10) to the following term

Erdij1 ´ dij expp´ejj1pzi, θ
˚qqp1` ejj1pzi, θ

˚q ´ p∆κjj1 ` αEr∆pijj1 |Wis ` α∆νijj1qq|Wis, (B.11)

where, as a reminder, ∆νijj1 is defined in equation (B.6). As Wi Ă Ji according to equation (3a),
we use the LIE to rewrite the expectation in equation (B.11) as

ErErdij1 ´ dij expp´ejj1pzi, θ
˚qqp1` ejj1pzi, θ

˚q ´ p∆κjj1 ` αEr∆pijj1 |Wis ` α∆νijj1qq|Jis|Wis.

According to equations (2) and (3), dij , dij1 , ∆κjj1 , α, and Er∆pijj1 |Wis are deterministic functions
of Ji. Thus, we can further rewrite the expectation in equation (B.11) as

Erdij1 ´ dij expp´ejj1pzi, θ
˚qqp1` ejj1pzi, θ

˚q ´ p∆κjj1 ` αEr∆pijj1 |Wis ` αEr∆νijj1 |Jisqq|Wis,
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and, given equation (B.7), we can further simplify this expectation as

Erdij1 ´ dij expp´ejj1pzi, θ
˚qqp1` ejj1pzi, θ

˚q ´ p∆κjj1 ` αEr∆pijj1 |Wisqq|Wis. (B.12)

We can thus conclude that

Erdij1 ´ dij expp´ejj1pzi, θ
˚qqp1` ejj1pzi, θ

˚q ´ p∆κjj1 ` αEr∆pijj1 |Wisqq|Wis

“

Erdij1 ´ dij expp´ejj1pzi, θ
˚qqp1` ejj1pzi, θ

˚q ´ p∆κjj1 ` αEr∆pijj1 |Wis ` α∆νijj1qq|Wis. (B.13)

Step 4. Combining equations (B.10) and (B.13), we rewrite the former as

Erdij1 ´ dij expp´ejj1pzi, θ
˚qqp1` ejj1pzi, θ

˚q ´ p∆κjj1 ` αEr∆pijj1 |Wis ` α∆νijj1qq|Wis ě 0,

and, given equations (5) and (B.6), we further rewrite it as

Erdij1 ´ dij expp´ejj1pzi, θ
˚qqp1` ejj1pzi, θ

˚q ´ p∆κjj1 ` α∆pijj1qq|Wis ě 0.

Finally, we take an expectation on both sides of this inequality conditional on zi. If zi Ď Wi, the
LIE implies

Erdij1 ´ dij expp´ejj1pzi, θ
˚qqp1` ejj1pzi, θ

˚q ´ p∆κjj1 ` α∆pijj1qq|zis ě 0,

which coincides with equation (B.9). l

B.3 Bounding Moment Inequalities: Approximation Point

In Section B.3.1, we derive the set of functions e “ tejj1p¨qu
J,J
j“1,j1“1 that minimize Θb

0peq. In Section
B.3.2, we write the bounding moment inequalities in equation (15) after plugging in the set of
functions derived in Section B.3.1, and show that the resulting inequalities point-identify θ˚.

B.3.1 Optimal Approximation Point

The identified set Θb
0peq defined by the bounding moment inequalities (see Section 4.2) depends on

the value of the set of functions e. We compute here the set e that minimizes Θb
0peq. Specifically,

given a pair of choices j and j1, we choose for every zi in its support, and every θ in the parameter
space Θ, the value ejj1pzi, θq that minimizes the moment function in equation (15b).

To do so, we compute the value of ejj1pzi, θq that makes the first derivative of mb
jj1pzi, θ, ejj1p¨qq

equal to zero; i.e., we compute the value of ejj1pzi, θq that solves

Bmb
jj1pzi, θ, ejj1p¨qq

Bejj1pzi, θq
“ 0,

with mb
jj1pzi, θ, ejj1p¨qq defined as in equation (15b). This first-order condition equals:

Erdij expp´ejj1pzi, θqqp1` ejj1pzi, θq ´ pθκj ´ θκj1 ` θα∆pijj1qq ´ dij expp´ejj1pzi, θqq|zis “ 0,

and, grouping terms,

Erdij expp´ejj1pzi, θqqpejj1pzi, θq ´ pθκj ´ θκj1 ` θα∆pijj1qq|zis “ 0.
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Dividing by expp´ejj1pzi, θqq on both sides of this expression, we obtain

Erdijpejj1pzi, θq ´ pθκj ´ θκj1 ` θα∆pijj1qq|zis “ 0,

As, according to the model in Section 3, Erdij |zis ‰ 0 for every j, this equality holds if and only if

Erejj1pzi, θq ´ pθκj ´ θκj1 ` θα∆pijj1q|zi, dij “ 1s “ 0.

The value of ejj1pz, θq that satisfies this equation is

e˚jj1pzi, θq “ θκj ´ θκj1 ` θαEr∆pijj1 |zi, dij “ 1s,

which corresponds to the expression in equation (22). To verify that mb
jj1pzi, θ, ejj1p¨qq is effectively

minimized when equation (22) holds, we compute the second-order condition, which equals:

Er´dij expp´ejj1pzi, θqqpejj1pzi, θq ´ pθκj ´ θκj1 ` θα∆pijj1qq ` dij expp´ejj1pzi, θqq|zis,

and, grouping terms,

Er´dij expp´ejj1pzi, θqqp´1` ejj1pzi, θq ´ pθκj ´ θκj1 ` θα∆pijj1qq|zis.

As expp´ejj1pzi, θqq ą 0 for any zi and θ, we can divide by this term without changing the sign of
the conditional expectation above, obtaining then

Er´dijp´1` ejj1pzi, θq ´ pθκj ´ θκj1 ` θα∆pijj1qq|zis.

As, according to the model in Section 3, Erdij |zis ą 0 for every choice j, the sign of this conditional
expectation is the same as the sign of the following conditional expectation

Er´p´1` ejj1pzi, θq ´ pθκj ´ θκj1 ` θα∆pijj1qq|zi, dij “ 1s.

Plugging in this expression the value of ejj1pzi, θq in equation (22), we find that it equals 1. Thus,
the second-order condition is positive and, consequently, the value of ejj1pzi, θq in equation (22)
does indeed provide a minimum to the moment function mb

jj1pzi, θ, ejj1p¨qq for every zi and θ.

B.3.2 Bounding Moment Inequality With Optimal Approximation Point

We show here that, if, for any two choices j and j1, it holds that

ejj1pzi, θq “ e˚jj1pzi, θq for all zi P Z and θ P Θ,

with the function e˚jj1p¨q defined as in equation (22), and

Erpi|Wis “ Erpi|zis, for all zi P Z,

then the identified set Θb
0peq in equation (16) coincides with the true parameter vector θ˚.

Proof. Plugging the expression for ejj1p¨q in equation (22) into equation (15b), we obtain

Erdij1 ´ dij expp´pθκj ´ θκj1 ` θαEr∆pijj1 |zi, dij “ 1sqqˆ

p1´ θαp∆pijj1 ´Er∆pijj1 |zi, dij “ 1sqq|zis ě 0. (B.14)
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If the condition in equation (23) holds, equations (3a) and (5) imply that

Er∆pijj1 |zi, dij “ 1s “ Er∆pijj1 |zis, (B.15)

for all zi P Z. To understand this equality, note equations (2) and (3a) imply there exists a function
dp¨q such that di “ dpWi, εiq. Thus, equation (5) impliesEr∆pijj1 |Wi, dis “ Er∆pijj1 |Wi, dpWi, εiqs “
Er∆pijj1 |Wis. As equation (23) imposes that Er∆pijj1 |zis “ Er∆pijj1 |Wis, equations (3a), (5), and
(23) imply that Er∆pijj1 |zi, dpWi, εiqs “ Er∆pijj1 |zis and, thus, they imply equation (B.15).

Combining equations (B.14) and (B.15), we obtain the following moment inequality:

Erdij1 ´ dij expp´pθκj ´ θκj1 ` θαEr∆pijj1 |zisqqp1´ θαp∆pijj1 ´Er∆pijj1 |zisqq|zis ě 0.

Equations (3a), (5), and (23) imply that ∆νijj1 “ ∆pijj1 ´ Er∆pijj1 |zis, with ∆νijj1 defined as in
equation (B.6). Thus, we can rewrite the moment inequality above as

Erdij1 ´ dij expp´pθκj ´ θκj1 ` θαEr∆pijj1 |zisqqp1´ θα∆νijj1q|zis ě 0.

As zi ĎWi Ă Ji, equation (B.7) implies we can use the LIE to derive the following inequality:

Erdij1 ´ dij expp´pθκj ´ θκj1 ` θαEr∆pijj1 |zisqq|zis ě 0.

As this inequality holds for any two ordered choices j and j1, the following two inequalities also
hold:

Erdij1 ´ dij expp´pθκj ´ θκj1 ` θαEr∆pijj1 |zisqq|zis ě 0,

Erdij ´ dij1 expp´pθκj1 ´ θκj ` θαEr∆pij1j |zisqq|zis ě 0.

Multiplying both sides of the second inequality by ´1 and combining it with the first one, we obtain
the following moment equality

Erdij1 ´ dij expp´pθκj ´ θκj1 ` θαEr∆pijj1 |zisqq|zis “ 0,

for any zi and any choices j and j1. Equations (7) and (23) imply we can rewrite this equality as

exppκj1 ` αErpij1 |zisq
řJ
j2“1 exppκj2 ` αErpij2 |zisq

´
exppκj ` αErpij |zisq

řJ
j2“1 exppκj2 ` αErpij2 |zisq

expp´pθκj ´ θκj1 ` θαEr∆pijj1 |zisqq “ 0,

or, equivalently,

exppκj1 ` αErpij1 |zisq ´ exppκj ` αErpij |zisq expp´pθκj ´ θκj1 ` θαEr∆pijj1 |zisqq “ 0.

Through simple algebraic operations, we can rewrite this equality as

exppθκj ´ θκj1 ` θαEr∆pijj1 |zisq “ exppκj ´ κj1 ` αEr∆pijj1 |zisq,

which implies that

θκj ´ θκj1 ` θαEr∆pijj1 |zis “ κj ´ κj1 ` αEr∆pijj1 |zis.

This equality holds for every two choices j and j1 and every zi P Z. Thus, the bounding moment
inequalities in equation (15) point identify θ˚ if three conditions are met: (a) ejj1pθq “ e˚jj1p¨q, with
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e˚jj1p¨q defined as in equation (22); (b) zi is such that equation (23) holds; and, (c) Er∆pijj1 |zis
varies across values of zi in its support for some pair of choices j and j1. l

B.4 Instrument Functions

The set of instrument functions GK we use depends on its cardinality K. We only consider cases in
which K is an even number. When computing the simulation results in Section 5.2 and Appendix
C.3, we fix K “ 2, and the set GK includes the following two instrument functions

g1pziq “ 1t´8 ă zi ď 0u,

g2pziq “ 1t0 ă zi ă 8u.

In our empirical setting, when computing the results in sections 6.2 and 8, we fix K “ 8 and the
set GK includes the following instrument functions

g1pziq “ 1t´8 ă zi ď p´25pziqu,

g2pziq “ 1tp
´
25pziq ă zi ď p´50pziqu,

g3pziq “ 1tp
´
50pziq ă zi ď p´75pziqu,

g4pziq “ 1tp
´
75pziq ă zi ă 0u,

g5pziq “ 1t0 ď zi ă p`25pziqu,

g6pziq “ 1tp
`
25pziq ď zi ă p`50pziqu,

g7pziq “ 1tp
`
50pziq ď zi ă p`75pziqu,

g8pziq “ 1tp
`
75pziq ď zi ă 8u.

where, for all q P r0, 100s, p´q pziq and p`q pziq denote the qth percentile of the distribution of negative
and positive values of zi, respectively. Generally, for anyK, we define the set of instrument functions
GK such that GK “ G´K Y G`K , with G´K “ tgkp¨q; k “ 1, . . . ,K{2u a set of instrument functions that
split the set of negative values of zi into equally likely bins, and G`K “ tgkp¨q; k “ K{2` 1, . . . ,Ku
a set of instrument functions that split the set of positive values of zi into equally likely bins.

B.5 Inference Procedures

In Section B.5.1, we describe our implementation of the inference procedure in Cox and Shi (2023).
In Section B.5.2, we describe how we adjust the p-values to account for multiple hypotheses testing.

B.5.1 Cox and Shi (2023)

We describe here our implementation of the CC test described Section 3.1 of Cox and Shi (2023).
Denote each of the L moment inequalities we use for estimation as

m̄lpθq ě 0, l “ 1, . . . , L, (B.16)

where, for each l “ 1, . . . , L,

m̄lpθq ”
1

N

N
ÿ

i“1

mlpdi, pi, zi, θq, (B.17)
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with N , di, pi, zi, and θ defined in Section 3, and L “ 2JpJ´1qK. That is, the number of moments,
L, equals the number of instrument functions we use, K, multiplied by the number of ordered pair
alternatives one can form from the set of J alternatives in the choice set, JpJ ´ 1q, multiplied by
the number of types of moment inequalities we use (i.e. 2, corresponding to the odds-based and
the bounding inequalities). Given a set of L inequalities and a grid Θg that contains the confidence
set, we implement the following steps to compute a confidence set for θ˚.22

Step 1: choose a point θp P Θg. Steps 2 to 8 test the null hypothesis that θ˚ equals θp:

H0 : θ˚ “ θp vs. H1 : θ˚ ‰ θp.

Step 2: evaluate the quasi-likelihood ratio statistic at θp:

T pθpq “ min
µ:µě0

Npm̄pθpq ´ µq
1Σ̂pθpq

´1pm̄pθpq ´ µq (B.18)

where, as a reminder, N is the sample size, Σ̂pθpq is a matrix defined as

Σ̂pθpq “
1

N

N
ÿ

i“1

pmpdi, pi, zi, θpq ´ m̄pθpqqpmpdi, pi, zi, θpq ´ m̄pθpqq
1, (B.19)

mpdi, pi, zi, θpq “ pm1pdi, pi, zi, θpq, . . . ,mLpdi, pi, zi, θpqq
1 and m̄pθpq “ pm̄1pθpq, . . . , m̄Lpθpqq

1. The
vector µ is of dimensions L ˆ 1, having as many elements as moments we use in the estimation.
Equation (B.18) is solved for every θp and, thus, the value of µ that solves the minimization problem
in this equation may vary across values of θp.

To prevent the issue of singularity of the covariance matrix, we follow Andrews and Barwick
(2012) and substitute Σ̂pθpq in equation (B.18) for the following matrix:

Σ̃pθpq “ Σ̂pθpq `maxt0.012´ detpΩ̂pθq, 0uDiagpΣ̂pθpqq (B.20)

with

Ω̂pθpq “ Diag´
1
2 pΣ̂pθpqqΣ̂pθpqDiag

´ 1
2 pΣ̂pθpqq, (B.21)

where Diag´
1
2 pΣ̂pθpqq is a matrix such that Diag´

1
2 pΣ̂pθpqqDiag

´ 1
2 pΣ̂pθpqq “ Diag´1pΣ̂pθpqq, and

DiagpΣ̂pθpqq is the Lˆ L diagonal matrix whose diagonal elements are equal to those of Σ̂pθpq.

Step 3: count how many values of µ equal 0. We denote this number as r̂.

Step 4: accept/reject θp. Include θp in the p1´ δq% confidence set, Θ̂1´δ, if

T pθpq ď χ2
r̂,1´α,

with χ2
r̂,1´α the 100p1´ αq% quantile of the chi-squared distribution with r̂ degrees of freedom.

Step 5: repeat steps 2 to 5 for every θp in the grid Θg.

Step 6: compare Θ̂1´α to Θg. If none of the points in Θ̂1´α are at the boundary of Θg, define
Θ̂1´α as the 95% confidence set for θ˚. Otherwise, expand the limits of Θg and repeat steps 1 to 8.

22When computing the simulation results in Section 5.2 and Appendix C.3, as well as when computing
the results in sections 6.2 and 8, we use a grid Θg that contains 413 “ 68, 921 points.
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B.5.2 Adjusting P-values Following Holm (1979)

We describe our implementation of the method in Holm (1979) to adjust p-values when testing
multiple hypotheses. This section’s content follows that of Online Appendix A.8.2 in Dickstein and
Morales (2018). Given a family of tests H1, H2, . . . ,HS with individual p-values p1, p2, . . . , pS , we
proceed as follows:

Step 1: rank hypotheses. Rank the S hypotheses in increasing order of their individual p-values.
Denote this index as piq.

Step 2: adjust individual p-values. Denoting as p̃piq the adjusted p-value for the piq-th smallest
individual p-value, we compute p̃piq “ maxjďi

 

mintpS ´ j ` 1qppjq, 1u
(

.
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C Simulation: Additional Details

We complement here the results presented in Section 5. In Appendix C.1, we provide theoretical
results that generalize the findings in Table 2 in Section 5. In Appendix C.3, we complement the
description of the results presented in Section 5 through graphical representations, and present
additional simulation results.

C.1 Additional Analytical Results

We describe here properties of the identified set Θo
0 defined in equation (9), and of the identified

set Θb
0pe

˚q defined in equations (16) and (22). We do so in three settings. Setting 1, discussed in
Section C.1.1, is one in which agents’ information sets are observed by the researcher (i.e., σ1 “ 0)
and agents make no expectational errors (i.e., σ3 “ 0). Setting 2, discussed in Section C.1.2, is
one in which agents’ information sets are observed by the researcher (i.e., σ1 “ 0) but agents make
expectational errors (i.e., σ3 ą 0). Finally, setting 3, discussed in Section C.1.3, is one in which
agents make no expectational errors (i.e., σ3 “ 0) but information sets are partially unobserved by
the researcher (i.e., σ1 ą 0).

C.1.1 Setting 1: σ1 “ σ3 “ 0

Within the context of the setting described in Section 5, the condition σ1 “ 0 implies that

Erpi|Wis “ Erpi|zis, (C.1)

and the condition σ3 “ 0 implies that

Erpi|Wis “ pi. (C.2)

We describe here properties of Θo
0 and Θb

0pe
˚q under the restrictions in equations (C.1) and (C.2).

Properties of Θo
0. Given equations (7), (C.1), and (C.2), we can rewrite equation (8) as

exppκj ` αpijq expp´pθκj ´ θκj1 ` θα∆pijj1qq ´ exppκj1 ` αpij1q ě 0.

Rearranging terms, we obtain

exppκj ´ κj1 ` α∆pijj1q ě exppθκj ´ θκj1 ` θα∆pijj1q,

and, taking logs on both sides and rearranging terms again, we obtain

κj ´ κj1 ` α∆pijj1 ´ pθκj ´ θκj1 ` θα∆pijj1q ě 0. (C.3)

As this inequality holds for every ordered pair of drugs, the following inequality also holds

κj1 ´ κj ` α∆pij1j ´ pθκj1 ´ θκj ` θα∆pij1jq ě 0,

or, equivalently,

κj ´ κj1 ` α∆pijj1 ´ pθκj ´ θκj1 ` θα∆pijj1q ď 0. (C.4)

Combining equations (C.3) and (C.4), we obtain the following equality
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κj ´ κj1 ` α∆pijj1 “ θκj ´ θκj1 ` θα∆pijj1 ,

for any two alternatives j and j1 and any value of ∆pijj1 in its support. Therefore, if the support
of ∆pijj1 includes more than one distinct value for a pair of alternatives j and j1, Θo

0 is a singleton,
and its only element is θ˚.

Properties of Θb
0pe

˚q. In Appendix B.3.2, we show the condition in equation (C.1) is sufficient for
Θb

0pe
˚q to point identify θ˚. Thus, the proof in Appendix B.3.2 implies that, if equations (C.1) and

(C.2) hold, Θb
0pe

˚q is a singleton and coincides with θ˚.

C.1.2 Setting 2: σ1 “ 0 and σ3 ą 0

Within the context of the setting described in Section 5, the condition σ1 “ 0 implies that

Erpi|Wis “ Erpi|zis. (C.5)

We describe here properties of Θo
0 and Θb

0pe
˚q under the restriction in equation (C.5).

Properties of Θo
0. Given equations (5), (7) and (C.5), we can rewrite equation (8) as

exppκj ` αErpij |zisqErexpp´pθκj ´ θκj1 ` θα∆pijj1qq|zis ´ exppκj1 ` αErpij1 |zisq ě 0,

Rearranging terms, we obtain

exppκj ´ κj1 ` αEr∆pijj1 |zisq ě Erexppθκj ´ θκj1 ` θα∆pijj1q|zis,

or, equivalently,

exppκj ´ κj1 ` αEr∆pijj1 |zisq ě Erexppθκj ´ θκj1 ` θαpEr∆pijj1 |zis `∆νijj1qq|zis,

with ∆νijj1 defined in equation (B.6). Through simple algebra, we can rewrite this inequality as

exppκj ´ κj1 ` αEr∆pijj1 |zisq ě Erexppθκj ´ θκj1 ` θαEr∆pijj1 |zisq exppθα∆νijj1q|zis,

or, equivalently,

exppκj ´ κj1 ` αEr∆pijj1 |zisq ě exppθκj ´ θκj1 ` θαEr∆pijj1 |zisqErexppθα∆νijj1q|zis.

Moving all terms to the left-hand side, this inequality becomes

expppκj ´ θκj q ´ pκj1 ´ θκj1 q ` pα´ θαqEr∆pijj1 |zisqErexpp´θα∆νijj1q|zis ě 1,

and given equations (3a), (B.7), and (C.5), we can further simplify this inequality as

expppκj ´ θκj q ´ pκj1 ´ θκj1 q ` pα´ θαqEr∆pijj1 |zisqErexpp´θα∆νijj1qs ě 1, (C.6)

As equation (B.6) implies Er∆νijj1s “ 0 and exppxq is convex in x, Jensen’s inequality implies that

Erexpp´θα∆νijj1qs ě 1, for all θα P R, (C.7)

and Erexpp´θα∆νijj1qs “ 1 only if ∆νijj1 “ 0 for every individual i in the population.
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Several features of the moment condition in equation (C.6) are worth noticing. First, when
evaluated at the true parameter value (i.e., pθκj , θκj1 , θαq “ pκj , κj1 , αq), it becomes

Erexpp´α∆νijj1qs, (C.8)

which, regardless of α, is larger or equal to one; see equation (C.7). Thus, the odds-based in-
equality in equation (8) holds at θ˚. If the distribution of ∆νijj1 is not degenerate at zero,
Erexpp´α∆νijj1qs ą 1 and the inequality also holds at values of θ other than θ˚. This is true
irrespective of the choices j and j1 and the value of zi used to build the inequality. Thus, if the
distribution of ∆νijj1 is not degenerate at zero, Θo

0 includes values of θ other than θ˚.
To further characterize Θo

0, we assume

pθκj , θκj1 q “ pκj , κj1q, (C.9a)

∆νij1j „ Np0, σ
2
εq. (C.9b)

Under these restrictions, the moment in equation (C.6) becomes

expppθα ´ αqEr∆pij1j |zis ` 0.5pθαq
2σ2
εq. (C.10)

We note three properties of this moment as a function of θα. First, it converges to 8 as θα goes to
either ´8 or 8. Second, its first derivative with respect to θα equals zero at

θα “ ´
Er∆pij1j |zis

σ2
ε

. (C.11)

Third, its second derivative with respect to θα is

pσ2
ε ` pEr∆pij1j |zis ` θασ

2
εq

2q expppθα ´ αqEr∆pij1j |zis ` 0.5pθαq
2σ2
εq ą 0, for all θα P R.

Thus, the function in equation (C.10) is globally convex, has a minimum at the value of θα indicated
in equation (C.11), and converges to 8 when θα goes to either 8 or ´8. These properties hold
for any two choices j and j1 and any value of zi. An implication is that the identified set for α is
of the form p8, a1s Y ra2,8q for real numbers a1 and a2, or of the form p8, a1s Y ra2, a3s Y ra4,8q
for real numbers a1, a2, a3 and a4, or, more generally, similar to the latter one but with even more
intervals; e.g., of the form p8, a1s Y ra2, a3s Y ra4, a5s Y ra6,8q for real numbers a1, a2, a3, a4,
a5, and a6. Although this property is shown under the restrictions in equation (C.9), the results
in Appendix C.3.2 show that it also holds in the simulation setting described in Section 5, where
expectational errors are not normal.

Properties of Θb
0pe

˚q. In Appendix B.3.2, we show the condition in equation (C.5) is sufficient for
Θb

0pe
˚q to point identify θ˚. Therefore, the proof in Appendix B.3.2 implies that, if equation (C.5)

holds, Θb
0pe

˚q is a singleton and coincides with θ˚.

C.1.3 Setting 3: σ1 ą 0 and σ3 “ 0

Within the context of the setting described in Section 5, the condition σ1 ą 0 implies that

ErErpij |Wis|zis “ Er∆pij |zis, but ErErpij |zis|Wis “ Erpij |zis, (C.12)

and the condition σ3 “ 0 implies that
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Erpij |Wis “ pij . (C.13)

We describe here properties of Θo
0 and Θb

0pe
˚q under the restrictions in equations (C.12) and (C.13).

Properties of Θo
0. Given equations (5), (7) and (C.13), we can rewrite equation (8) as

E

«

exppκj ` αpijq
řJ
j2“1 exppκj2 ` αpij2q

expp´pθκj ´ θκj1 ` θα∆pijj1qq ´
exppκj1 ` αpij1q

řJ
j2“1 exppκj2 ` αpij2q

ˇ

ˇ

ˇ

ˇ

ˇ

zi

ff

ě 0,

or, equivalently,

E

«

exppκj1 ` αpij1q
řJ
j2“1 exppκj2 ` αpij2q

ˆ

exppκj ´ κj1 ` α∆pijj1q expp´pθκj ´ θκj1 ` θα∆pijj1qq ´ 1

˙

ˇ

ˇ

ˇ

ˇ

ˇ

zi

ff

ě 0.

Grouping terms, we obtain the following moment inequality

E

«

exppκj1 ` αpij1q
řJ
j2“1 exppκj2 ` αpij2q

ˆ

expppκj ´ θκj q ´ pκj1 ´ θκj1 q ` pα´ θαq∆pijj1q ´ 1

˙

ˇ

ˇ

ˇ

ˇ

ˇ

zi

ff

ě 0. (C.14)

To characterize Θo
0, we assume

pθκj , θκj1 q “ pκj , κj1q, (C.15a)

∆pij1j |zi „ Np0, σ
2
pq. (C.15b)

Under restriction (C.15a), the moment in equation (C.14) becomes

E

«

exppκj1 ` αpij1q
řJ
j2“1 exppκj2 ` αpij2q

ˆ

expppθα ´ αq∆pij1jq ´ 1

˙

ˇ

ˇ

ˇ

ˇ

ˇ

zi

ff

. (C.16)

We note two properties of this moment as a function of θα. First, it converges to 8 as θα goes
to either ´8 or 8. To illustrate this point, note that the function in equation (C.16) is bounded
from below by the following function

E

«

exppκj1 ` αpij1q
řJ
j2“1 exppκj2 ` αpij2q

ˇ

ˇ

ˇ

ˇ

ˇ

zi

ff

E

«

expppθα ´ αq∆pij1jq ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

zi

ff

. (C.17)

The first expectation in this equation is always finite and positive, and it does not depend on θα.
Under the assumption in equation (C.15b), the second expectation in equation (C.17) becomes

E

«

expppθα ´ αq∆pij1jq ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

zi

ff

“ expp0.5pθα ´ αq
2σ2
pq ´ 1, (C.18)

which indeed converges to 8 as θα goes to either ´8 or 8. Second, the second derivative of the
moment function in equation (C.17) with respect to θα equals

E

«

exppκj1 ` αpij1q
řJ
j2“1 exppκj2 ` αpij2q

expppθα ´ αq∆pij1jqp∆pij1jq
2

ˇ

ˇ

ˇ

ˇ

ˇ

zi

ff

ě 0 for all θα P R,
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where the sign of this inequality can be established because the moment function equals the product
of three positive terms. Thus, the moment in equation (C.14) is globally convex and converges to 8
when θα goes to either 8 or ´8. These properties hold for any two choices j and j1 and any zi. An
implication is that the identified set for α has the form p8, a1sYra2,8q for real numbers a1 and a2,
or the form p8, a1sYra2, a3sYra4,8q for real numbers a1, a2, a3 and a4, or, more generally, a form
similar to the latter one but with more intervals; e.g., the form p8, a1sY ra2, a3sY ra4, a5sY ra6,8q
for real numbers a1, a2, a3, a4, a5, and a6. Although this property is shown here under the restric-
tions in equation (C.15), Appendix C.3.2 shows it also holds in the setting described in Section 5,
where expectational errors are not normal.

Properties of Θb
0pe

˚q. Given equations (5), (7), (15), (22), and (C.13), mb
jj1pzi, θ, e

˚
jj1p¨qq equals

E

„

exppκj1 ` αpij1q
řJ
j2“1 exppκj2 ` αpij2q

ˆ

1´ exppκj ´ κj1 ` α∆pijj1q

ˆ expp´pθκj ´ θκj1 ` θαEr∆pijj1 |zi, dij “ 1sqqp1` θαpEr∆pijj1 |zi, dij “ 1s ´∆pijj1qq

˙
ˇ

ˇ

ˇ

ˇ

zi



.

Grouping terms, we obtain the following bounding moment inequality

E

«

exppκj1 ` αpij1q
řJ
j2“1 exppκj2 ` αpij2q

˜

1´ expp´ppθκj ´ κjq ´ pθκj1 ´ κj1q ´ α∆pijj1 ` θαEr∆pijj1 |zi, dij “ 1sqqˆ

ˆ p1` θαpEr∆pijj1 |zi, dij “ 1s ´∆pijj1qq

¸ˇ

ˇ

ˇ

ˇ

ˇ

zi

ff

ě 0, (C.19)

where this inequality holds for every two choices j and j1 and every value of zi in its support.
The properties of the inequality in equation (C.19) are difficult to characterize analytically.

When evaluated at the true parameter value (i.e., pθκj , θκj1 , θαq “ pκj , κj1 , αq), it becomes

E

«

exppκj1 ` αpij1q
řJ
j2“1 exppκj2 ` αpij2q

˜

1´ exppxqp1´ xq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

zi

ff

ě 0,

with x “ αp∆pijj1 ´ Er∆pijj1 |zi, dij “ 1sq. As exppxqp1 ´ xq ď 1 for all x P R, the inequality in
equation (C.19) holds at the true parameter value and, thus, as implied by Theorem 2, θ˚ P Θb

0pe
˚q.

Understanding the analytical properties of the moment in equation (C.19) as the parameters differ
from their true values is not trivial. However, as shown in Appendix C.3.2, if pθκj , θκj1 q “ pκj , κj1q,
the resulting moment becomes globally concave in θα and converges to ´8 when θα goes to 8 and
when it goes to ´8. An implication of this property is that, if pθκj , θκj1 q “ pκj , κj1q, the identified
set for α defined by the inequality in equation (C.19) has the form ra, bs for real numbers a and b.

C.2 Simulation Results: Figures

In this section, we include figures representing the confidence sets discussed in Section 5. For each
case considered in Table 2, we include 6 figures. Those in panel (a) include projections of the
corresponding 95% confidence set on the two-dimensional space pκ2, θq; those in panel (b) include
projections of the same confidence set on the two-dimensional space pκ3, θq. In all figures, the MLE
is captured by a purple diamond, and the confidence set is captured by a cloud of blue dots.
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Figure C.1: Case 1 in Table 2

(a) Projected Confidence Set for pκ2, θq

Odds-based Ineq. Bounding Ineq. Both Types

(b) Projected Confidence Set for pκ3, θq

Odds-based Ineq. Bounding Ineq. Both Types

Figure C.2: Case 2 in Table 2

(a) Projected Confidence Set for pκ2, θq

Odds-based Ineq. Bounding Ineq. Both Types

(b) Projected Confidence Set for pκ3, θq

Odds-based Ineq. Bounding Ineq. Both Types
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Figure C.3: Case 3(a) in Table 2

(a) Projected Confidence Set for pκ2, θq

Odds-based Ineq. Bounding Ineq. Both Types

(b) Projected Confidence Set for pκ3, θq

Odds-based Ineq. Bounding Ineq. Both Types

Figure C.4: Case 3(b) in Table 2

(a) Projected Confidence Set for pκ2, θq

Odds-based Ineq. Bounding Ineq. Both Types

(b) Projected Confidence Set for pκ3, θq

Odds-based Ineq. Bounding Ineq. Both Types
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Figure C.5: Case 4 in Table 2

(a) Projected Confidence Set for pκ2, θq

Odds-based Ineq. Bounding Ineq. Both Types

(b) Projected Confidence Set for pκ3, θq

Odds-based Ineq. Bounding Ineq. Both Types

Figure C.6: Case 5 in Table 2

(a) Projected Confidence Set for pκ2, θq

Odds-based Ineq. Bounding Ineq. Both Types

(b) Projected Confidence Set for pκ3, θq

Odds-based Ineq. Bounding Ineq. Both Types
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C.3 Additional Simulation Results

We present here two sets of additional simulation results. In Section C.3.1 we present results for
settings analogous to those in Table 2 in Section 5. In Section C.3.2, we present simulation results
for settings in which the true value of the choice-specific fixed effects is assumed to be known by
the econometrician. We compute confidence sets for the parameter α, and include figures that
illustrate the behavior of the odds-based and bounding moment inequalities.

C.3.1 With Unknown Choice-Specific Fixed Effects

Comparing the results in case 2(b) in Table C.1 to those in case 2 in Table 2, we observe that
the confidence set defined by the bounding moment inequalities is in both cases a singleton that
coincides with the true parameter value. The confidence set defined by the odds-based moment
inequalities includes points other than the true value of the parameters, and it is larger in case
2(b) (when the standard deviation of the expectational error equals σ3 “ 2) than it is in case
2 (when the standard deviation of the expectational error equals σ3 “ 1). A comparison of the
results for cases 2 and 2(b) thus illustrates that the identified set defined by the bounding moment
inequalities is invariant to the variance of the expectational error, but the identified set defined by
the odds-based inequalities increases in the variance of the expectational error.

Comparing the results in case 4(b) in Table C.1 to those in case 4 in Table 2, we observe that,
as we increase the value of σ1 and σ3, the confidence sets defined by the odds-based inequalities

Table C.1: Simulation Results - MLE and Confidence Intervals

Case σ1 σ3 zi Estimator
MLE & Confidence Sets

α κ2 κ3

2(b) 0 2 x2i

MLE 1 0 1
Odds-based* [0.75 , 1.50] [-0.50 , 0.50] [0.50 , 1.50]

Bounding [1 , 1] [0 , 0] [1 , 1]
Both [1 , 1] [0 , 0] [1 , 1]

4(b) 2 2 x2i

MLE 0.75 0 0.74
Odds-based* [0.80 , 2.50] [-1.50 , 1.50] [-0.50 , 2.50]

Bounding [0.55 , 1.45] [-1.00 , 1.00] [0.05 , 2.00]
Both [0.80 , 1.45] [-1.00 , 1.00] [0.05 , 2.00]

5(b) 0 2 pi

MLE 0.64 -0.07 0.64
Odds-based H H H

Bounding [0.65 , 0.65] [-0.10 , -0.05] [0.60 , 0.65]
Both H H H

Note: σ1 and σ3 are parameters of the distributions of x1ij and x3ij , respectively, as indicated in footnote 13.
MLE indicates the maximum likelihood estimate. Odds-based, Bounding, and Both contain the projections on
each parameter of 95% confidence sets computed according to the procedures in Cox and Shi (2023). Odds-based
indicates the corresponding confidence set is computed using only odds-based inequalities of the type in equation
(24); Bounding indicates the confidence set is computed using only bounding inequalities of the type in equation
(25); Both indicates the confidence set is computed using both types of inequalities. In cases 2(b) and 4(b), the
moment inequalities are built using the instrument functions in equation (26). In case 5(b), the inequalities are
built using instead the instrument functions g1ppiq “ 1t∆pijj1 ě 0u and g2ppiq “ 1t∆pijj1 ă 0u. In cases 2(b) and
5(b), all confidence sets are computed by testing points in 3-dimensional orthotope whose sides are r0.5, 1.5s (for
α), r´0.5, 0.5s (for κ2) and r0.5, 1.5s (for κ3). In Case 4(b), all confidence sets are computed by testing points in
3-dimensional orthotope whose sides are r´0.5, 2.5s (for α), r´1.5, 1.5s (for κ2) and r´0.5, 2.5s (for κ3). We mark
with an asterisk next to the label Odds-based the cases in which the confidence interval generated by the odds-based
inequalities includes points outside the grid; this is never the case when we use bounding inequalities only nor when
we combine bounding and odds-based inequalities.
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and by the bounding inequalities both increase. The downward bias in the MLE also increases.
Finally, comparing the results in case 5(b) in Table C.1 to those in case 5 in Table 2, we observe

that, as we increase the variance of the expectational error (i.e., as we increase σ3 from 1 to 2), the
downward bias in the MLE increases, while the confidence sets defined by the odds-based moment
inequalities and by the combination of both types of inequalities remain empty.

C.3.2 With Known Choice-Specific Fixed Effects

We report here confidence sets for the price coefficient α conditional on fixing the choice-specific
fixed effects at their true values; i.e., conditional on θκj “ κj for all j “ 1, . . . , J . The advantage
of this setting (relative to one in which the choice-specific fixed effects are unknown) is that, as
the unknown parameter is a scalar, we can plot the moments in a two-dimensional graph. This
facilitates observing the shape of these moments as functions of θα. To limit simulation noise, every
result in this section is computed on a simulated sample with N “ 6, 000, 000 observations.

Case 1 in Table C.2 corresponds to a setting in which the researcher’s assumed information set
equals the true one (i.e., σ1 “ 0) and agents make no expectational error (i.e., σ3 “ 0). In this
case, the MLE equals the true parameter value, and the confidence sets defined by the odds-based
inequalities and the bounding inequalities both include only one parameter value, the true one.

Cases 2 and 2(b) in Table C.2 correspond to a setting in which the researcher’s assumed in-
formation set coincides with the true one (i.e., σ1 “ 0) and agents make expectational errors (i.e.,
σ3 ą 0). In this case, the MLE is consistent, and the confidence set defined by the bounding moment
inequalities includes only the true parameter value. The confidence set defined by the odds-based
inequalities includes other values of θα in addition to the true one. Specifically, the confidence set
defined by the odds-based inequalities has the form p´8, a1s Y ra2,8q for real numbers a1 and a2,
with a1 and a2 increasing and decreasing, respectively, in σ3. The shape of this confidence set is
a consequence of the odds-based moments being globally convex, having a minimum at the value
of θα indicated in equation (C.11), and converging to 8 when θα goes to 8 and when it goes to
´8. As discussed in Appendix C.1.2, these properties of the odds-based moment inequalities apply
more generally than to the specific setting studied in cases 2 and 2(b) in Table C.2. For cases 2
and 2(b), these properties are shown in the left and middle panels in figures C.8 and C.9.

In cases 3 and 3(b), we consider agents that make no expectational errors (i.e, σ3 “ 0) but
whose true information sets are partly unobserved by the researcher (i.e., σ1 ą 0). The MLE is
asymptotically biased towards zero, and the bias increases in σ1. The confidence set defined by the
odds-based and by the bounding moment inequalities includes values of the parameter θα beyond
its true value α. Specifically, the confidence set defined by the bounding inequalities has the form
ra1, a2s for real numbers a1 and a2, with a1 and a2 decreasing and increasing, respectively, in σ1. The
fact that the confidence set defined by the bounding inequalities is convex is a consequence of the
bounding moments being globally concave; see right panel in figures C.10 and C.11. The confidence
set defined by the odds-based moment inequalities has the form p´8, a1sYra2, a3sYra4,8q for real
numbers a1, a2, a3, and a4. The fact that the confidence set defined by the odds-based inequalities
is non-convex is due to the odds-based moments being globally convex and going to 8 when θα
goes to 8 and when it goes to ´8 ; see left and middle panels in figures C.10 and C.11.

In cases 4 and 4(b), we consider a setting in which the researcher wrongly assumes that the
agent has perfect information on prices. The MLE is downward biased, and the bias increases in
the importance of the firm’s expectational error (i.e., the bias increases in σ3). The confidence sets
defined by the odds-based and bounding moment inequalities are empty. As illustrated in figures
C.12 and C.13, there is no value of θα for which all moments are above zero, and this happens more
clearly the larger is σ3.
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Table C.2: Simulation Results - MLE and Confidence Intervals

Case σ1 σ3 zi Estimator
MLE & Confidence Sets

α

1 0 0 x2i

MLE 1
Odds-based [1 , 1]
Bounding [1 , 1]

Both [1 , 1]

2 0 1 x2i

MLE 1
Odds-based p´8,´4.37s Y r0.92,8q
Bounding [1 , 1]

Both [1 , 1]

2(b) 0 2 x2i

MLE 1
Odds-based p´8,´1.95s Y r0.80,8q
Bounding [1 , 1]

Both [1 , 1]

3 1 0 x2i

MLE 0.93
Odds-based p´8,´4.10s Y r1, 1s Y r2.93,8q
Bounding [0.83,1.08]

Both [1 , 1]

3(b) 2 0 x2i

MLE 0.78
Odds-based p´8,´1.73s Y r1, 1.03s Y r1.30,8q
Bounding [0.63,1.35]

Both r1, 1s Y r1.30, 1.35s

5 0 1 pi

MLE 0.89
Odds-based H

Bounding H

Both H

5(b) 0 2 pi

MLE 0.68
Odds-based H

Bounding H

Both H

Note: σ1 and σ3 are parameters of the distributions of x1ij and x3ij , respectively, as indicated in footnote 13.
MLE indicates the maximum likelihood estimate. Odds-based, Bounding, and Both contain the projections on
each parameter 95% confidence sets computed according to the procedures in Cox and Shi (2023). Odds-based
indicates the corresponding confidence set is computed using only odds-based inequalities of the type in equation
(24); Bounding indicates the confidence set is computed using only bounding inequalities of the type in equation
(25); Both indicates the confidence set is computed using both types of inequalities. In cases 1 to 4, the moment
inequalities are built using the instrument functions in equation (26). In case 5, the inequalities are built using
instead the instrument functions g1ppiq “ 1t∆pijj1 ě 0u and g2ppiq “ 1t∆pijj1 ă 0u.
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Figure C.7: Case 1 in Table C.2

(a) All Moments

Odds-based Ineq. Bounding Ineq. Both Types

(b) Lower Contour of Moments

Odds-based Ineq. Bounding Ineq. Both Types

(c) Lower Contour of Moments - Zooming In and Out

Odds-based (Zoom In) Odds-based (Zoom Out) Bounding Ineq.
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Figure C.8: Case 2 in Table C.2

(a) Lower Contour of Moments - Zooming In and Out

Odds-based (Zoom In) Odds-based (Zoom Out) Bounding Ineq.

Figure C.9: Case 2(b) in Table C.2

(a) Lower Contour of Moments - Zooming In and Out

Odds-based (Zoom In) Odds-based (Zoom Out) Bounding Ineq.

Figure C.10: Case 3 in Table C.2

(a) Lower Contour of Moments - Zooming In and Out

Odds-based (Zoom In) Odds-based (Zoom Out) Bounding Ineq.
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Figure C.11: Case 3(b) in Table C.2

(a) Lower Contour of Moments - Zooming In and Out

Odds-based (Zoom In) Odds-based (Zoom Out) Bounding Ineq.

Figure C.12: Case 4 in Table C.2

(a) Lower Contour of Moments - Zooming In and Out

Odds-based Ineq. Bounding Ineq. Both Types

Figure C.13: Case 4(b) in Table C.2

(a) Lower Contour of Moments - Zooming In and Out

Odds-based Ineq. Bounding Ineq. Both Types
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C.3.3 Confidence Sets Following Procedure in Andrews and Soares (2010)

Table C.3 is analogous to Table 2 in the main text, with the only difference that all moment
inequality confidence intervals are computed following the procedure in Andrews and Soares (2010).
For detailed description of our implementing of the inference procedure in Andrews and Soares
(2010), see Appendix A.7. in Dickstein and Morales (2018).

Table C.3: Simulation Results - MLE and Confidence Intervals

Case σ1 σ3 zi Estimator
MLE & Confidence Sets

α κ2 κ3

1 0 0 x2i

MLE 1 0 1
Odds-based [1 , 1] [0 , 0] [1 , 1]
Bounding [1 , 1] [0 , 0] [1 , 1]

Both [1 , 1] [0 , 0] [1 , 1]

2 0 1 x2i

MLE 1 0 1
Odds-based* [0.92 , 1.50] [-0.34 , 0.34] [0.66 , 1.32]

Bounding [1 , 1] [0 , 0] [1 , 1]
Both [1 , 1] [0 , 0] [1 , 1]

3(a) 1 0 x2i

MLE 0.91 0 0.91
Odds-based* [1 , 1] [0 , 0] [1 , 1]

Bounding [0.80 , 1.10] [-0.32 , 0.32] [0.70 , 1.30]
Both [1 , 1] [0 , 0] [1 , 1]

3(b) 2 0 x2i

MLE 0.75 0 0.75
Odds-based* [1 ,1]Y[1.10 , 2.50] [-1.50 , 1.50] [-0.50 , 2.50]

Bounding [0.55 , 1.45] [-1 , 0.95] [0.05 , 1.95]
Both [1 ,1]Y[1.10 , 1.45] [-0.15 , 0.20] [1 , 1.35]

4 1 1 x2i

MLE 0.92 0 0.91
Odds-based* [0.92 , 1.50] [-0.48 , 0.50] [0.65 , 1.50]

Bounding [0.80 , 1.10] [-0.30 , 0.30] [0.70 , 1.30]
Both [0.92 , 1.10] [-0.33 , 0.30] [0.70 , 1.30]

5 0 1 pi

MLE 0.87 -0.03 0.87
Odds-based H H H

Bounding H H H

Both H H H

Note: σ1 and σ3 are parameters of the distributions of x1ij and x3ij , as indicated in footnote 13. MLE indicates the
maximum likelihood estimate. Odds-based, Bounding, and Both contain the projections on each parameter of 95% confidence
sets computed according to the procedure in Andrews and Soares (2010). Odds-based indicates the corresponding confidence
set is computed using only odds-based inequalities of the type in equation (24); Bounding indicates the confidence set is
computed using only bounding inequalities of the type in equation (25); Both indicates the confidence set is computed using
both types of inequalities. In cases 1 to 4, we build the moment inequalities using the instrument functions in equation (26).
In case 5, we build the inequalities using the instrument functions g1ppiq “ 1t∆pijj1 ě 0u and g2ppiq “ 1t∆pijj1 ă 0u.
In all cases other than case 3(b), confidence sets are computed by testing points in a 3-dimensional grid whose sides are
r0.5, 1.5s (for α), r´0.5, 0.5s (for κ2) and r0.5, 1.5s (for κ3). In case 3(b), we use a grid whose sides are r´0.5, 2.5s (for α),
r´1.5, 1.5s (for κ2) and r´0.5, 2.5s (for κ3). We mark cases with an asterisk when the confidence set includes points outside
the grid. The minimum distance between any two points in the grid is 0.02.
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D Estimation Results: Additional Details

D.1 Results From Vuong (1989) Test

With the goal of determining which of the alternative models reported in Table 3 fit the data
better, we implement tests à la Vuong (1989). We compare all possible pairs of models among
those listed in Table 3. The ultimate conclusion of these tests is that the model that assumes that
physicians’ information sets equal the average of current out-of-pocket costs by the drug-carrier-
year triplet dominates all other models considered in Table 3. We report in Table D.1 the test
statistic for every test that compares: (a) the model that assumes that physicians’ information sets
equal the average out-of-pocket cost by drug-carrier-year triplet to (b) all other alternative models
considered in Table 3. The results show that the test statistic is always positive and far away from
zero, indicating that the model with information sets equal to the average of out-of-pocket cost by
drug-carrier-year triplet is preferred at all commonly used statistical significance levels.

Table D.1: Vuong (1989) Test Results For Model with Assumed Information Set Equal to
Average Current Prices By Drug-Carrier-Year Against All Other Models

Alternative Assumption
Test Statisticon Information Set

Perfect Information 34.97

Average Current Prices By
26.96Drug-Plan Type-Carrier-Year

Average Current Prices By
37.04Drug-Plan Type-Year

Average Current Prices By
36.04Drug-Year

Exact Lagged Prices 34.44

Average Lagged Prices By
25.25Drug-Plan Type-Carrier-Year

Average Lagged Prices By
15.77Drug-Carrier-Year

Average Lagged Prices By
33.03Drug-Plan Type-Year

Average Lagged Prices By
34.22Drug-Year

Note: In the column labeled “Test Statistic,” we report the
value of the test statistic for Vuong (1989) tests that compare
the model that assumes that physicians know average current
prices by crug-carrier-year to models that impose the alternative
informational assumption listed in the column labeled “Alter-
native Assumption on Information Set.”

For any two models 1 and 2, the test statistic in Table D.1 equals

test statistic “
L1
N ´ L

2
N ´ 0.5pK1 ´K2q logpNq

?
NωN

(D.1)

29



where N is the sample size and, for m “ t1, 2u, LmN denotes the log-likelihood evaluated at the
corresponding maximum likelihood estimate, and Km denotes the number of parameters. The
variable ωN equals the square root of

ω2
N “ V

”

log
f1i

f2i

ı

,

where, for m “ t1, 2u, fmi denotes the log-likelihood function for observation i associated to model
m. The models that differ in the assumed information set of the physician are non-nested and,
therefore, to implement the Vuong (1989) test, we compare the test statistic in equation (D.1) to
the appropriate quantile from the standard normal distribution.
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